462

CHAPTER 8 -+ PIPELINING /
5 6 7
Clock cycle 1 2 3 4 8 9 T”nt:
Instruction
W
I, (Mul) F, | Di | Ei -
E
1 F_; g , D3 E3 \,\/3 l
3 - - e . .. |
14 F4 D4 E4 W4

i)

i ipeli d d between D, and W,
Figure 8.6 Pipeline stalled by data eﬂpen ency |

This example illustrates a basic constraint that must be enforce ¢, Quary
correct results. When two operations depend on each other, they myg; be perf()rm:z
S€quentially in the correct order. This rather obvious condition has far~reachjng .
Sequences. Understanding its implications is the key to under Standing the Variety
design alternatives and trade-offs encountered in pipelined computers,

when the destination of one instruction is used as a source in the next Instruction, fy
example, the two instructions

Mul R2,R3,R4
Add R5,R4.R6

in cycle 3, it realizes that R4 is used a5 5 source operand. Hence, the D step of thi

instruction cannot be completed until the W Step of the multiply instruction has b
completed. Completion of step D> must be delayed to clock cycle 5, and is shown®

.Step Da, in the figure, Instruction I3 is fetched ip cycle 3, but its decoding must ¥

delayed because Step D3 cannot precede D>. Hence, pipelined execution is stalled [

8.2.1 OPERAND FORWARDING

. X Lol
datahazard just deg i , : _ : in Figure
The J cribed ariseg because ope instruction, instruction l> inF "l

1s waiting for data to pe WIItten in the wa.: .

r possibly eliminateq, if 8.2 Dup
(ed! eddlrecﬂy for use in step E, b ange for the , s 463
pe e N
-or“’a dule 2 7a Shows a part of the — sult of INstruction |, tq be
! Flgh This arrasnl%g;em 1S Similar (g e € thre atap‘“h 'IVOlVing the A
reglsle ers SRC1- 2nd RSLT have bee add:::l s}; Ucture jp FlZureL 7U8&2d e
{ a XCept
i fegisters constitute tl?e
source |
source 2 i
\\‘ SRC2
Register
file
A
RSLT
Destination &
(a) Datapath
SRCI,SRC2 RSLT , »

‘ E: Execute . > W: Write
:> ——J1> (ALU) ; (Register file)

t_ Forwarding path

(b) Position of the source and result registers in the processor pipeline

Figure 8.7 OQS/LQQQ@WGdeQ in a pipelined processor.

——S e

464 '

CHAPTER 8 . PIPELINING

i needed for pipelined operation, as illustrated in o
rgifsrrzrtiacietslggﬁe 8.2b, registers SRCJ arid SR(?Z are part of bui%erlg“reg
Part of B3. The data forwarding mec.thamsm is provided by the B COnnBz an(j%-w
two multiplexers connected at the inputs to tlie ALU allow the daty . ecti()n].RSL.l!
bus to be selected instead of the contents of either the' SRC] o SR 0 the del.nQ-\.‘]
When the instructions in Figure 8.6 are executed in the datapath ogeg.isle:[i"in]
Operations performed in each clock cycle are as follows. Afe, decod-Flg“rég ‘
I, and detecting the data dependency, a deCision is macie to use daty f Ing Ing '7‘"
oberand not involved in the dependency, register R2, is reaq ang]anrwardinruilk
SRC1 in clock cycle 3. In the next clock cycle, the prodilct Produceg bd(?d in reg'.]i
Is available in register RSLT, and because of the forwardmg Connec tiop _lns[ruqi&g|E

In step E,. Hence, execution of I, proceeds without interruption. > gy begnl
by

8.2.2 HANDLING DATA HAZARDS IN SOFTWARE

in Figure 8.6, we assumed the data dependency is discovered by the hardy,
'BStruction is being decoded. The control hardware delays reading r. egisteralr{e Wh”elhg
cle S, thus Introducing a 2-cycle stall unless operand forwarding ig Used, N
approach is to leave the task of detecting data dependencies and dealjng Wit }? d ternan'{
§oftware. In this case, the compiler can introduce the two-cycle delay p o detg o
Instructions I, and I, by inserting NOP (No-operation) instructions, as fo”owsb.etwei“

I,: Mul R2R3,R4
NOP

NOP
I: Add R5,R4,R6

t

If the responsibility for detecting such dependencies is left entirely to the softwg

pompiler must insert the NOP instructions to obtain a correct result, Thg possiﬁifhe
Hlustrates the close link between the compiler and the hardware. A particular fea]uj[)
can be either implemented in hardware or left to the compiler, Leaving tagks suCh:-j
Inserting NOP instructions to the compiler leads to simpler hardware. Being aware

implementation.

8.2.3 SIDE EFFECTS

‘ : " il
The data dependencies encountereq In the preceding examples are explicit and ea;]J
detected because the register involved is named as the destination in instruction hmer
. S o . . -‘ O
as a source in I,. Sometimes an instructiop changes the contents of a registe!

