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performance. Modern processors typically employ both pipelining and techniques
that exploit instruction-level parallelism, and we will assume that all of the ILP
processors discussed in this chapter are pipelined unless otherwise specified.

Pipelining improves performance by increasing the rate at which instructions can
be executed. However, as we saw in the last chapter, there are limits to how much
pipelining can improve performance. As more and more pipeline stages are added to
a processor, the delay of the pipeline register required in each stage becomes a
significant component of the cycle time, reducing the benefit of increasing the
pipeline depth. More significantly, increasing the pipeline depth increases branch
delay and instruction latency, increasing the number of stall cycles that occur
between dependent instructions.

Since the combination of technological constraints and diminishing returns from
additional pipelining limits the maximum clock rate of a processor in a given
fabrication process, architects have turned to parallelism to improve performance by
performing multiple tasks at the same time. Parallel computer systems tend to take
one of two forms: multiprocessors and instruction-level parallel processors, which
vary in the size of the tasks that are executed in parallel. In multiprocessor systems,
which are covered in Chapter 12, relatively large tasks, such as procedures or loop
iterations, are executed in parallel. In contrast, instruction-level parallel processors
execute individual instructions in parallel.

Processors that exploit instruction-level parallelism have been much more
successful than multiprocessors in the general-purpose workstation/PC market
because they can provide performance improvements on conventional programs,
while this has not been possible on multiprocessors. In particular, superscalar
processors can achieve speedups when running programs that were compiled for
execution on sequential (non-ILP) processors without requiring recompilation. The
other architecture that will be covered in this chapter, VLIW processors, requires
that programs be recompiled for the new architecture but achieves very good
performance on programs written in sequential languages such as C or FORTRAN
when these programs are recompiled for a VLIW processor.

A high level block diagram of an instruction-level parallel processor is shown in
Fig. 7-1. The processor contains multiple execution units to execute instructions,
each of which reads its operands from and writes its results to a single, centralized
register file. When an operation writes its result back to the register file, that result
becomes visible to all of the execution units on the next cycle, allowing operations
to execute on different units from the operations that generate their inputs.
Instruction-level parallel processors often have complex bypassing hardware that
forwards the results of each instruction to all of the execution units to reduce the
delay between dependent instructions.

The instructions that make up a program are handled by the instruction issue
logic, which issues instructions to the units in parallel. This allows control flow
changes, such as branches, to occur simultaneously across all of the units, making it
much easier to write and compile programs for instruction-level parallel processors.

In Fig. 7-1, all of the execution units have been drawn as identical modules. In
most actual processors, some or all of the execution units are only able to execute a
subset of the processor’s instructions. The most common division is between integer
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Fig. 7-1. Instruction-level parallel processor.

operations and floating-point operations, because these operations require very
different hardware. Implementing these two sets of hardware as separate execution
units increases the number of instructions that can be executed simultaneously
without significantly increasing the amount of hardware required. On other
processors, some of the integer execution units may be constructed to execute
only some of the processor’s integer operations, generally the most commonly
executed operations. This reduces the size of these execution units, although it
means that some combinations of independent integer instructions cannot be
executed in parallel.

7.3 What is Instruction-Level Parallelism?

Instruction-level parallel processors exploit the fact that many of the instructions in a
sequential program do not depend on the instructions that immediately precede them
in the program. For example, consider the program fragment in the left side of Fig.
7.2. Instructions 1, 3, and 5 are dependent on each other because instruction 1
generates a data value that is used by instruction 3, which generates a result that is
used by instruction 5. Instructions 2 and 4 do not use the results of any other
instructions in the fragment and do not generate any results that are used by
instructions in the fragment. These dependencies require that instructions 1, 3, and 5
be executed in order to generate the correct result, but instructions 2 and 4 can be

1:1LDrl, (12)

2: ADD 15, 16,17 | Cycle 1: LDrl, (r2) ADD 15, 16, 17
3:SUBr4,rl, 14 Cycle 2: SUBr4,rl,r4 MUL18,19,r10
4: MUL 18,19, 110 Cycle 3: ST(rll),r4

5: ST (rl1), r4

Fig. 7-2. Instruction-level parallelism example.
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executed before, after, or in paralle]l with any of the other instructions without
changing the results of the program fragment.

On a processor that executes one instruction at a time, the execution time of this
program would be at least five cycles, even on an unpipelined processor with an
instruction latency of one cycle. In contrast, an unpipelined processor that is capable
of executing two instructions simultaneously could execute the program fragment in
three cycles if each instruction had a latency of one cycle, as shown in the right half
of the figure. Because instructions 1, 3, and 5 are dependent, it is not possible to
reduce the execution time of the fragment any further by increasing the number of
instructions that the processor can execute simultaneously.

This example illustrates both the strengths and the weaknesses of instruction-
level parallelism. ILP processors can achieve significant speedups on a wide variety
of programs by executing instructions in parallel, but their maximum performance
improvement is limited by instruction dependencies. In general, as more execution
units are added to a processor, the incremental performance improvement that
results from adding each execution unit decreases. Going from one execution unit to
two gives substantial reductions in execution time. However, as the number of
execution units is increased to four, eight, or more, the additional execution units
spend most of their time idle, particularly if the program has not been compiled to
take advantage of the additional execution units.

7.4 Limitations of Instruction-Level
Parallelism

The performance of ILP processors is limited by the amount of instruction-level
parallelism that the compiler and the hardware can locate in the program. Instruc-
tion-level parallelism is limited by several factors: data dependencies, name
dependencies (WAR and WAW hazards), and branches. In addition, a given
processor’s ability to exploit instruction-level parallelism may be limited by the
number and type of execution units present in the processor and by restrictions on
which instructions in the program can be examined to locate operations that can be
performed in parallel.

RAW dependencies limit performance by requiring that instructions be executed
in sequence to generate the correct results, and they represent a fundamental
limitation on the amount of instruction-level parallelism available in programs.
Instructions with WAW dependencies must also issue sequentially to ensure that the
correct instruction writes its destination register last. Instructions with WAR
dependencies can issue in the same cycle, but not out of order, because instructions
read their inputs from the register file before they issue. Thus, an instruction that
reads a register can issue in the same cycle as an instruction that writes the register
and appears later in the program, because the reading instruction will read its input
registers before the writing instruction generates the new value of its destination
register. Later in this chapter, we will discuss register renaming, a hardware
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technique that allows instructions with WAR and WAW dependencies to be
executed out of order without changing the results of the program.

Branches limit instruction-level parallelism because the processor does not know
which instructions will be executed after a branch until the branch has completed.
This requires the processor to wait for the branch to complete before any
instructions after the branch can be executed. As mentioned in the last chapter,
many processors incorporate branch prediction hardware to reduce the impact of
branches on execution time by predicting the destination address of a branch before
the branch is executed.

EXAMPLE
Consider the following program fragment :

ADD rl, r2, r3
LD r4, (r5)

SUB r7, rl, r9
MUL r5, r4, r4
SUB rl, rl2, rlo0
ST (rl3), rl4

OR rl5, rl4, ri2

How long would this program take to issue on a processor that allows two
instructions to be executed simultaneously? How about on a processor that
allows four instructions to be executed simultaneously? Assume that the
processor can execute instructions in any order that does not violate data
dependencies, that all instructions have latencies of one cycle, and that all of the
processor’'s execution units can execute any of the instructions in the fragment.

Solution

On a processor that allows two instructions to be executed simultaneously,
this program will take four cycles to issue. One sample sequence is shown in
the following, but there are several sequences that take the same number of

cycles.

Cycle 1: ADD rl, r2, r3 LD r4, (rd)
Cycle 2: SUB r7, rl, r9 MUL r5, r4, r4
Cycle 3: SUB rl, rl2, rl0 ST (rl3), rl4
Cycle 4: OR rl1l5, rl4, rl2

If the processor can execute four instructions simultaneously, the program
can issue in two cycles, as follows:

Cyclel:ADDrl, r2, r3 LDr4, (r5) ST (rl3), rl4 ORrl5, rl4, ri12
Cycle 2: SUB r7, rl, rS MUL r5, r4, r4 SUB rl, rl2, rilo0
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Note that, regardless of the number of instructions that the processor can
execute simultaneously, it is not possible to issue this program fragment in only
one cycle, because of the RAW dependencies between the ADD rl, r2, r3 and
SUB 17, rl, 19 instructions and between the LD r4, (r5) and MUL 15, r4, r4
instructions. Also, note that the SUB 17, rl, 9 and SUB rl, ri2, rl0
instructions, which have a WAR dependence, are issued in the same cycle.

7.5 Superscalar Processors

Superscalar processors rely on hardware to extract instruction-level parallelism from
sequential programs. During each cycle, the instruction issue logic of a superscalar
processor examines the instructions in the sequential program to determine which
instructions may be issued on that cycle. If enough instruction-level parallelism
exists within a program, a superscalar processor can execute one instruction per
execution unit per cycle, even if the program was originally compiled for execution
on a processor that could only execute one instruction per cycle.

This capability is one of the greatest advantages of superscalar processors and is
the reason why virtually all workstation and PC CPUs are superscalar processors.
Superscalar processors can run programs that were originally compiled for purely
sequential processors, and they can achieve better performance on these programs
than processors that are incapable of exploiting instruction-level parallelism. Thus,
users who buy systems containing superscalar CPUs can install their old programs
on those systems and see better performance on those programs than was possible
on their old systems.

The ability of superscalar processors to exploit instruction-level parallelism on
sequential programs does not mean that compilers are irrelevant for systems built
around superscalar processors. In fact, good compilers are even more critical to the
performance of superscalar systems than they are on purely sequential processors.
Superscalar processors can only examine a small window of the instructions in a
program at one time to determine which instructions can be executed in parallel. If a
compiler is able to schedule a program’s instructions so that large numbers of
independent instructions occur within this window, a superscalar processor will be
able to achieve good performance on the program. If most of the instructions within
the window at any time are dependent on each other, a superscalar processor will not
be able to run the program much faster than a sequential processor would. In Section
7.9, we will discuss techniques that a compiler can use to improve the performance
of programs on superscalar processors.

7.6 In-Order versus Out-of-Order Execution

One of the significant complexity/performance trade-offs in the design of a
superscalar processor is whether the processor is required to execute instructions
in the order that they appear in the program (in-order execution), or whether the
processor can execute instructions in any order that does not change the result of the
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program (out-of-order execution). Out-of-order execution can provide much better
performance than in-order execution but requires much more complex hardware to
implement.

7.6.1 PREDICTING EXECUTION TIMES ON IN-ORDER
PROCESSORS

In the previous chapter, we divided the execution time of programs on pipelined
processors into the time to issue all of the instructions in the program and the
pipeline latency of the processor, giving

Execution Time (in Cycles) = Pipeline Latency + Issue Time — 1

On pipelined ILP processors, we can use the same expression for the execution time
of a program, but calculating the issue time becomes somewhat more complex
because the processor can issue more than one instruction in a cycle. Since the
pipeline latency of a processor does not vary from program to program, most of the
exercises in this chapter will focus on determining the issue time of programs on
ILP processors.

On in-order superscalar processors, the issue time of a program can be
determined by stepping sequentially through the code to determine when each
instruction can issue, similar to the technique used for pipelined processors that
execute only one instruction per cycle. The key difference between an in-order
superscalar processor and a non-superscalar pipelined processor is that a superscalar
processor can issue an instruction in the same cycle as the previous instruction in the
program if the data dependencies allow, as long as the number of instructions issued
in the cycle does not exceed the number of instructions that the processor can
execute simultaneously. On processors where some or all of the execution units can
only execute some instructions, the set of instructions issued on a given cycle must
match the limitations of the execution units.

EXAMPLE )

How long would the following sequence of instructions take to execute on an
in-order processor with two execution units, each of which can execute any
instruction? Load operations have a latency of two cycles, and all other
operations have a latency of one cycle. Assume that the pipeline depth is 5
stages.

LD rl, (x2)

ADD r3, rl, r4
SUB r5, r6, r7
MUL r8, r9, rl0

Solution

The pipeline latency of this processor is five cycles. Assuming that the LD
issues on cycle n, the ADD cannot issue until cycle n+ 2 because it is
dependent on the LD. The SUB is independent of the ADD and the LD, so it
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also issues on cycle n + 2. (It cannot issue in cycle 7 or n + 1 because the
processor must issue instructions in order.) The MUL is also independent of all
previous instructions, but must wait until cycle n + 3 to issue, because the
processor can only issue two instructions per cycle. Therefore, it takes four
cycles to issue all of the instructions in the program, and the execution time is
54+4—-1=8cycles.

7.6.2 PREDICTING EXECUTION TIMES ON OUT-OF-ORDER
PROCESSORS

Determining the issue time of a sequence of instructions on an out-of-order
processor is significantly more difficult than determining the issue time of the
same sequence on an in-order processor, because there are many possible orders in
which the instructions could execute. In general, the best approach is to start by
examining the sequence of instructions to locate the dependencies between
instructions. Once the dependencies between instructions are understood, they can
then be assigned to issue cycles to minimize the delay between the execution of the
first and last instructions in the sequence.

The effort required to find the best-possible ordering of a set of instructions
grows exponentially with the number of instructions in the set, since all possible
orderings must potentially be considered. Thus, we will assume that the instruction
logic in a superscalar processor places some restrictions on the order in which
instructions issue in order to simplify the instruction issue logic. The assumption we
will make is that the processor issues an instruction in the first cycle in which the
dependencies within the program allow it to issue'. If more instructions can issue in
a cycle than the processor has execution units, the processor will take a greedy
approach and issue the instructions that occur earliest in the program, even if issuing
the instructions in a different order would reduce the time required to issue the
sequence. When the compiler is able to control when instructions issue, such as in
the VLIW processors that are discussed in Section 7.8, we will assume that the
compiler considers all possible instruction orderings to find the one with the shortest
execution time, since the compiler is able to devote more effort to instruction
scheduling than the issue logic.

With this greedy instruction issue assumption, finding the issue time of a
sequence of instructions on an out-of-order processor becomes much easier. Starting
at the first instruction in the sequence, proceed through the instructions, assigning
each instruction to the earliest cycle on which all of its input operands are available,
the number of instructions already assigned to issue in the cycle is less than the
number of instructions that the processor can issue simultaneously, and the set of
instructions to be issued does not violate the limitations of the processor’s execution
units, even if this means that an instruction issues before an instruction that appears

! This is a simplifying assumption that may or may not be true on any particular out-of-order processor. The order
in which instructions issue on an out-of-order processor is strongly dependent on the details of the processor’s
instruction issue logic, and different processors may have different policies.
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later in the original program. Repeating this process for all of the instructions in the
sequence will determine how long the sequence takes to issue.

EXAMPLE

How long would the following sequence of instructions take to issue on an out-of-
order processor with two execution units, each of which can execute any
instruction? Load operations have a latency of 2 cycles, and all other operations
have a latency of 1 cycle. (This is the same sequence as the example that was
used to illustrate in-order instruction issue.)

LD rl, (r2)

ADD r3, rl, r4
SUB r5, r6, 7
MUL r8, r9, rl0

Solution

The only dependency in this sequence is between the LD and the ADD
instructions (a RAW dependency). Because of this dependency the ADD
instruction must issue at least two cycles after the LD. The SUB and the MUL
could both issue in the same cycle as the LD. Using our greedy assumption, the
SUB and the LD issue in cycle n, the MUL issues in cycle n + 1, and the ADD
issues in cycle n + 2, giving a three-cycle issue time for this program.

7.6.3 IMPLEMENTATION ISSUES FOR OUT-OF-ORDER
PROCESSORS

On in-order processors, the instruction window (the number of instructions the
processor examines to select instructions to issue in each cycle) can be relatively
small, since the processor is not allowed to issue an instruction until all of the
instructions that appear before it in the program have been issued. On a processor
with n execution units, only the next n instructions in the program can possibly be
issued in a given cycle, so an instruction window length of n instructions is
generally sufficient.

Out-of-order processors require much larger instruction windows than in-order
processors, to give them as much opportunity as possible to find instructions that
can issue in a given cycle. However, the size of the instruction logic grows
quadratically with the number of instructions in the instruction window, since
each instruction in the window must be compared to all other instructions to
determine the dependencies between them. This makes large instruction windows
expensive to implement in terms of the amount of hardware required.

The procedure presented earlier for determining the execution time of an
instruction sequence on an out-of-order processor assumed that the processor’s
instruction window was large enough to allow the processor to examine all of the
instructions in the sequence simultaneously. If this is not the case, predicting
execution time becomes much more difficult, as it becomes necessary to keep track
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of which instructions are contained within the instruction window on any given
cycle and only select instructions to issue from within that set.

Handling interrupts and program exceptions is another difficult implementation
issue on out-of-order processors. If instructions can execute out of order, it becomes
very difficult to determine exactly which instructions have executed when an
instruction takes an exception or when an interrupt occurs. This makes it hard for
the programmer to determine the cause of an exception and makes it hard for the
system to return to execution of the original program when an interrupt handler
completes.

To combat this, virtually all out-of-order processors use a technique called in-
order retirement. When an instruction generates its result, the result is only written
into the register file if all earlier instructions in the program have completed. - . W
Otherwise, the result is saved until all earlier instructions have completed, and only ™ = "=~
then written into the register file. Since results are written into the register file in
order, the hardware can simply discard all results that are waiting to be written into
the register file when an exception or interrupt occurs. This presents the illusion that
instructions are being executed in order, allowing programmers to debug errors
relatively easily and making it possible to resume execution of the program at the
next instruction when an interrupt handler completes. Processors that use this
technique generally use bypassing logic or other techniques to forward the result of
an instruction to dependent instructions before the result is written into the register
file. This allows dependent instructions to issue as soon as an instruction generates
its result, rather than having to wait until the instruction’s result is written back into
the register file.

7.7 Register Renaming

WAR and WAW dependencies are sometimes referred to as “name dependencies,”
because they are a result of the fact that programs are forced to reuse registers
because of the limited size of the register file. These dependencies can limit
instruction-level parallelism on superscalar processors, because it is necessary to
ensure that all instructions that read a register complete the register read stage of the
pipeline before any instruction overwrites that register.

Register renaming is a technique that reduces the impact of WAR and WAW
dependencies on parallelism by dynamically assigning each value produced by a
program to a new register, thus breaking WAR and WAW dependencies. Figure 7-3
illustrates register renaming. Each instruction set has an architectural register file,
which is the set of registers that the instruction set uses. All instructions specify their
inputs and outputs out of the architectural register file. On the processor, a larger
register file, known as the hardware register file, is implemented instead of the
architectural register file. Renaming logic tracks mappings between registers in the
architectural register file and the hardware register file.

Whenever an instruction reads a register in the architectural register file, the
register ID is sent through the renaming logic to determine which register in the
hardware register file should be accessed. When an instruction writes a register in
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Architectural Register File (4 Registers) Hardware Register File (8 Registers)
(Specified in ISA) (Implemented on Processor)
r0 hw(
rl hwl
12 hw2
3 hw3
hw4
12 Renaming hw5
LDl 2 —_— Logic L hws
Arc}‘ntectural Hardware
Register . hwé
Number Register
Number
hw7

Fig. 7-3. Register renaming.

the architectural register file, the renaming logic creates a new mapping between the
architectural register that was written and a register in the hardware register file.
Subsequent instructions that read the architectural register access the new hardware
register and see the result of the instruction.

Figure 7-4 illustrates how register renaming can improve performance. In the
original (before renaming) program, a WAR dependence exists between the LD 17,
(r3) and SUB r3, rl2, rll instructions. The combination of RAW and WAR
dependencies in the program forces the program to take at least three cycles to
issue, because the LD must issue after the ADD, the SUB cannot issue before the
LD, and the ST cannot issue until after the SUB.

Before Renaming After Renaming
ADD 3, 14,15 ADD hw3, hw4, hw$

LD 17, (3) __’ LD hw7, (hw3)
SUB13,rl12,rll SUB hw20, hw12, hwil

ST (r15), 13 ST (hwl15), hw20

Fig. 7-4. Register renaming example

With register renaming, the first write to r3 maps to hardware register hw3, while
the second maps to hw20 (these are just arbitrary examples). This remapping
converts the original four-instruction dependency chain into 2 two-instruction
chains, which can then be executed in parallel if the processor allows out-of-
order execution. In general, register renaming is of more benefit on out-of-order
processors than on in-order processors, because out-of-order processors can reorder
instructions once register renaming has broken the name dependencies.
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EXAMPLE

On an out-of-order superscalar processor with 8 execution units, what is the
execution time of the following sequence with and without register renaming if
any execution unit can execute any instruction and the latency of all instructions
is one cycle? Assume that the hardware register file contains enough registers to
remap each destination register to a different hardware register and that the
pipeline depth is 5 stages.

LD r7, (r8)

MUL rl, r7, r2
SUB r7, r4, 5
ADD r9, x7, r8
LD r8, (rl2)

DIV rl1l0, r8, rl0

Solution

In this example, WAR dependencies are a significant limitation on paralle-
lism, forcing the DIV to issue 3 cycles after the first LD, for a total execution
time of 8 cycles (the MUL and the SUB can execute in parallel, as can the
ADD and the second LD). After register renaming, the program becomes

LD hw7, (hw8)

MUL hwl, hw7, hw2
SUB hwl7, hwéd4, hwS
ADD hw9, hwl7, hw8
LD hwl8, (hw 12)

DIV hwl0, hwl8, hwlO0

(Again, all of the renaming register choices are arbitrary.)

With register renaming, the program has been broken into three sets of
two dependent instructions (LD and MUL, SUB and ADD, LD and DIV). The
SUB and the second LD instruction can now issue in the same cycle as the first
LD. The MUL, ADD, and DIV instructions all issue in the next cycle, for a
total execution time of 6 cycles.

Adding register renaming to a processor generally gives less of an improvement
than changing the instruction set architecture to make the new registers part of the
architectural registers, because the compiler cannot use the new registers to store
temporary values. However, register renaming allows new processors to remain
compatible with programs compiled for older versions of the processor because it
does not require changing the ISA. In addition, increasing the number of archi-
tecturai registers in a processor increases the number of bits required for each
instruction, as a larger number of bits is required to encode the operands and
destination register.
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7.8 VLIW Processors

The superscalar processors that we have discussed so far in this chapter use
hardware to exploit ILP by locating instructions that can execute in parallel from
within sequential programs. Their ability to achieve performance improvements on
old programs and maintain compatibility between generations of a processor family
has made them tremendously successful commercially, but achieving good perfor-
mance on superscalar processors requires a great deal of hardware. Very long
instruction word (VLIW) processors take a different approach to instruction-level
parallelism, relying on the compiler to determine which instructions may be
executed in parallel and provide that information to the hardware.

In a VLIW processor, each instruction specifies several independent operations
that are executed in parallel by the hardware, as shown in Figs. 7-5 and 7-6. Each

Operation 1 Operation 2 Operation 3 Operation 4

Fig. 7-5. VLIW instruction.

From Memory

r0perati0n 1 | Operation 2 I Operation 3 IOpemtion4 ] VLIW Instruction

Instruction Logic

Y

| Operation 1 | Operation 2 | Operation 3 | Operation 4 | VLIW Instruction

Execution Execution Execution Execution
Unit Unit Unit Unit
. . ™
Register File

Fig. 7-6. VLIW processor.
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operation in a VLIW instruction is equivalent to one instruction in a superscalar or
purely sequential processor. The number of operations in a VLIW instruction is
equal to the number of execution units in the processor, and each operation specifies
the instruction that will be executed on the corresponding execution unit in the cycle
that the VLIW instruction is issued. There is no need for the hardware to examine
the instruction stream to determine which instructions may be executed in parallel,
as the compiler is responsible for ensuring that all of the operations in an instruction
can be executed simultaneously. Because of this, ‘the instruction issue logic on a
VLIW processor is much simpler than the instruction issue logic on a superscalar
processor with the same number of execution units.

Most VLIW processors do not have scoreboards on their register files.
Instead, the compiler is responsible for ensuring that an operation is not issued
before its operands are ready. Each cycle, the instruction logic fetches a VLIW
instruction from the memory and issues it to the execution units for execution.
Thus, the compiler can predict exactly how many cycles will elapse between the
execution of two operations by counting the number of VLIW instructions between
them. In addition, the compiler can schedule instructions with a WAR dependency
out of order so long as the instruction that reads the register issues before
the instruction that writes the register completes, because the old value in the
register is not overwritten until the writing instruction completes. For example,
on a VLIW processor with a two-cycle load latency, the sequence ADD rl, 12, 13,
LD 12, (r4) could be scheduled so that the ADD operation appeared in the
instruction after the load, since the load will not overwrite 12 until two cycles
have elapsed.

7.8.1 PROS AND CONS OF VLIW

The main advantages of VLIW architectures are that their simpler instruction logic
often allows them to be implemented with shorter clock cycles than superscalar
processors and that the compiler has complete control over when operations are
executed. The compiler generally has a larger-scale view of the program than. the
instruction logic in a superscalar processor and is therefore generally better than the
issue logic at finding instructions to execute in parallel. Their simpler instruction
issue logic also often allows VLIW processors to fit more execution units onto a
given amount of chip space than superscalar processors.

The most significant disadvantage of VLIW processors is that VLIW programs
only work correctly when executed on a processor with the same number of
execution units and the same instruction latencies as the processor they were
compiled for, which makes it virtually impossible to maintain compatibility between
generations of a processor family. If the number of execution units in a processor
increases between generations, the new processor will try to combine operations
from multiple instructions in each cycle, potentially causing dependent instructions
to execute in the same cycle. Changing instruction latencies between generations of
a processor family can cause operations to execute before their inputs are ready or
after their inputs have been overwritten, resulting in incorrect behavior. In addition,
if the compiler cannot find enough parallel operations to fill all of the slots in an



CHAPTER 7 Instruction-Level Parallelism

instruction, it must place explicit NOP (no-operation) operations into the corre-
sponding operation slots. This causes VLIW programs to take more memory than
equivalent programs for superscalar processors.

Because of their advantages and disadvantages, VLIW processors are often used
in digital signal-processing (DSP) applications, where high performance and low
cost are critical. They have been less successful in general-purpose computers such
as workstations and PCs, because customers demand software compatibility
between generations of a processor.

EXAMPLE

Show how a compiler would schedule the following sequence of operations

for execution on a VLIW processor with 3 execution units. Assume that all
operations have a latency of two cycles, and that any execution unit can execute
any operation.

ADD rl, r2, r3
SUB rl6, rl4, r7
LD r2, (r4)

LD rl4, (rl5)
MUL r5, rl, r9
ADD r9, ri0, rll
SUB rl2, r2, rl4

Solution

Figure 7-7 shows how these operations would be scheduled. Note that the
LD rl4, (r15) is scheduled in the instruction before the SUB rl6, ri4, 17
operation despite the fact that the SUB instruction appears earlier in the
original program and reads the destination register of the LD. Because VLIW
operations do not overwrite their register values until they complete, the
previous value of r14 remains available until 2 cycles after the instruction
containing the LD issues, allowing the SUB to see the old value of r14 and
generate the correct result. Scheduling these operations out-of-order in this
way allows the program to be scheduled into fewer instructions than would be
possible otherwise. Similarly the ADD 19, rl10, rll1 operation is scheduled
ahead of the MUL 15, r1, r9 operation, although these operations could have
been placed in the same instruction without increasing the number of
instructions required by the program.

Instruction 1 ADDrl, r2,r3 LD r2, (r4) LD ri4, (rl5)
Instruction 2 SUBrio, ri4, r7 ADD 9, r10, ri1 NOP
Instruction 3 MUL S, rl, r9 SUBri2, r2, ri4 NOP

Fig. 7-7. VLIW scheduling example.
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7.9 Compilation Techniques for
Instruction-Level Parallelism

Compilers use a wide variety of techniques to improve the performance of compiled
programs, including constant propagation, dead code elimination, and register
allocation. A general discussion of compiler optimizations is beyond the scope of
this book, but this section will cover loop unrolling, an optimization that signifi-
cantly increases instruction-level parallelism, in detail and will briefly describe
software pipelining, another compilation technique used to improve performance.

7.9.1 LOOP UNROLLING

Individual loop iterations tend to have relatively low instruction-level parallelism
because they often contain chains of dependent instructions, and because of the
limited number of instructions between branches. Loop unrolling addresses this
limitation by transforming a loop with N iterations into a loop with N/M iterations,
where each iteration in the new loop does the work of M iterations of the old loop.
This increases the number of instructions between branches, giving the compiler
and the hardware more opportunity to find instruction-level parallelism. In addition,
if the iterations of the original loop are independent or contain only a few dependent
computations, loop unrolling can create multiple chains of dependent instructions
where only one chain existed before unrolling, also increasing the ability of the
system to exploit instruction-level parallelism.

Figure 7-8 shows a C-language example of loop unrolling. The original loop iterates
through the source arrays one element at a time, computing the sum of correspond-
ing elements in the source arrays and storing the result in the destination array. The
unrolled loop steps through the arrays at two elements per iteration, performing the
work of two iterations of the original loop in each iteration of the unrolled loop. In
this example, the loop has been unrolled two times.? The original loop could have
been unrolled four times by adding 4 to the loop index i in each iteration and
performing the work of four original iterations in each iteration of the unrolled loop.

Original Loop Unrolled Loop
for (i=0; i < 100; i++){ > for (i=0; i< 100;i+=2) {
afi] = b{i] + c[i];

a[i] = bli] + c[i];
} afi+ 1]=b[i + 1] +c[i+1];
}

Fig. 7-8. C-language loop unrolling example.
This example also illustrates another advantage of loop unrolling: reduction in

loop overhead. By unrolling the original loop two times, we reduce the number of
iterations of the loop from 100 to 50. This halves the number of conditional branch

2 A loop is said to have been unrolled # times if each iteration of the unrolled loop performs the work of n
iterations of the original loop.
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instructions that must be executed at the end of loop iterations, reducing the total
number of instructions that the system needs to execute during the loop in addition
to exposing more instruction-level parallelism. Thus, loop unrolling can be of some
benefit even on purely sequential processors, although its benefits are most
significant on ILP processors.

Figure 7-9 shows how the loop from Fig. 7-8 might be implemented in assembly
language, and how a compiler might unroll the loop and schedule it for fast
execution on a superscalar processor with 32-bit data types. Even in the original
loop, the compiler has scheduled the code to expose as much ILP as possible by
placing both of the initial loads ahead of either of the ADDs that increment pointers,
and by performing the pointer increments ahead of the ADD that implements
ali] = bfi} + [i]. Arranging instructions such that independent instructions are close
together in the program makes it easier for the hardware in a superscalar processor
to locate instruction-level parallelism, while placing the pointer increments between
the loads and the computation of afi] increases the number of operations between
the loads and the use of their results, making it more likely that the loads will
complete before their results are needed.

The unrolled loop begins with three adds to generate pointers to a[i + 1], b[i + 1],
and c[i + 1]. Keeping these pointers in separate registers from the pointers to ali],
b[i], and c[i] allows the loads and stores to the ith and i + /th elements of each array
to be done in parallel, rather than having to increment each pointer between memory
references. This initial block of setup instructions for the unrolled loop is called the
preamble to the loop. In the body of the loop, the compiler has placed all of the
loads in one block, followed by all of the pointer increments, then the computation
of a[i] and a[i + 1], and finally the stores and loopback branch. This maximizes both
parallelism and the time for the loads to complete.

In the example we have studied so far, the number of iterations of the original
loop was evenly divisible by the degree of loop unrolling, making it easy to unroll
the loop. In many cases, however, the number of loop iterations is not divisible by
the degree of unrolling, or it is not known at compile time, making it harder to unroll
the loop. For example, the compiler might want to unroll the loop of Fig. 7-8 eight
times, or the number of iterations might be an input parameter to the procedure
containing the loop.

In these cases, the compiler generates two loops. The first loop is an unrolled
version of the original loop, and it executes until the number of iterations remaining
is less than the degree of loop unrolling. The second loop then executes the
remaining iterations one at a time. In loops where the number of iterations is not
known at the start of the loop, such as a loop that iterates through a string looking
for the end-of-string character, it becomes much harder to unroll the loop and more
sophisticated techniques are required.

Figure 7-10 shows how the loop of Fig. 7-8 would be unrolled eight times. The
first loop steps through the iterations eight at a time, until there are fewer than eight
iterations remaining (detected when i 4 8 >= 100). The second loop starts at the
next iteration and steps through the remaining iterations one at a time. Because i is
an integer variable, the computation i = ((100/8) x 8) does not set i to 100. The
integer computation 100/8 generates only the integer portion of the quotient
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Unrolled Loop
for (i=0;i<100;i+=8) {
a[i} = bfi] + cfi];
ali+1]=bli+1]+cfi+1];
Original Loop ai+2] = bfi + 2] + cfi +2;
for (1=0; i < 100; i++){ afi + 3] =b[i+ 3] +cfi+3);
il =bfil+ clil, P afi+4]=bfi + 4] + cfi +4];
afi + 5]="b[i + 5]+ c[i + 5);
afi + 6] = b[i + 6] +c[i + 6};
ali+7]=bli+7]+c[i+ 7}
}
for (i = ((100 / 8)x8); i < 100; i++){
afi] = bli] + cfi];
}

Fig. 7-10. Uneven loop unrolling.

(dropping the remainder), and multiplying that result by 8 gives the largest multiple
of 8 that is less than 100 (96), which is where the second loop should begin its
iterations. :

7.9.2 SOFTWARE PIPELINING

Loop unrolling improves performance by increasing the number of independent
operations within a loop iteration. Another optimization, software pipelining,
improves performance by distributing each iteration of the original loop over
multiple iterations of the pipelined loop, so that each iteration of the new loop
performs some of the work of multiple iterations of the original loop. For example, a
loop that fetched b{i] and c[i] from memory, added them together to generate
ali], and wrote qfi] back to memory might be transformed so that each inter-
action first wrote ai — 1] back to memory, then computed a[7] based on the values of
b[i] and cfi] that were fetched in the last iteration, and finally fetched b[i + 1]
and c[i + 1] from memory to prepare for the next iteration. Thus, the work of
computing a given element of the a[ ] array is distributed across three iterations of
the new loop.

Interleaving portions of different loop iterations in this way increases instruction-
level parallelism in much the same way that loop unrolling does. It also increases the
number of instructions between the computation of a value and its use, making it
more likely that the value will be ready before it is needed. Many compilers combine
software pipelining and loop unrolling to increase instruction-level parallelism
further than is possible by applying either optimization individually.

7.10 Summary

Exploiting instruction-level parallelism can greatly improve the performance of a
processor by allowing independent instructions to execute at the same time. The
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performance of an ILP processor on a given program is limited by several factors.
The number of execution units in the processor determines the maximum number of
instructions that the processor can execute simultaneously. Instruction dependencies
limit the amount of instruction-level parallelism available in the program. This
limitation is particularly significant for in-order superscalar processors, because one
pair of dependent instructions can stall all of the remaining instructions in the
program. Finally, instruction-level parallelism can be limited by restrictions on the

window of instructions that the system can examine to find instructions that can

execute in parallel.

In this chapter, we have covered the two most common architectures for
instruction-level parallelism: superscalar processors and very long instruction
word processors. VLIW processors rely on the compiler to schedule instructions
for parallel execution by placing multiple operations in a single long instruction
word. All of the operations in a VLIW instruction execute in the same cycle,
allowing the compiler to control which instructions execute in any given cycle.
VLIW processors can be relatively simple, allowing them to be implemented at high
clock speeds, but they are generally unable to maintain compatibility between
generations because any change to the processor implementation requires that
programs be recompiled if they are to execute correctly.

Superscalar processors, on the other hand, contain hardware that examines a
sequential program to locate instructions that can be executed in parallel. This
allows them to maintain compatibility between generations and to achieve speedups
on programs that were compiled for sequential processors, but they have a limited
window of instructions that the hardware examines to select instructions that can be
executed in parallel, which can reduce performance.

Two hardware techniques to improve the performance of superscalar processors
were discussed. Out-of-order execution allows the processor to execute instructions
in any order that does not change the result of the program. This improves
performance by preventing dependent instructions from holding up the execution
of later independent instructions. Register renaming breaks WAW and WAR hazards
by mapping the architectural register set of the processor onto a larger hardware
register set, allowing more instructions to be executed in parallel.

Finally, compiler techniques for ILP processors were briefly discussed. In
particular, the loop unrolling optimization, which fuses several iterations of an
original loop into one iteration to improve instruction-level parallelism, was
discussed in detail. Good compilers are crucial to the performance of both VLIW
and superscalar processors.

Instruction-level parallelism will continue to be an important technique for
improving performance in the future. As fabrication technologies advance, the
amount of time required for each execution unit to communicate with the
processor’s register file and instruction issue logic may limit performance, requiring
more advanced architectures that distribute these resources into several smaller
modules that are located close to the individual execution units. This style of
processor architecture is an active area of research, and the next decade should see
substantial changes in the way instruction-level processors are built.

163 2
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Solved Problems

Instruction-Level Parallelism

7.1

What is instruction-level parallelism? How do processors exploit it to improve
performance?

Solution

Instruction-level parallelism refers to the fact that many of the instructions in a sequential
program are independent, meaning that it is not necessary to execute them in the order that
they appear in the program to produce the correct result. Processors exploit this by executing
these instructions in parallel rather than sequentially, reducing the amount of time that they
take to execute programs.

Dependent Operations

7.2

What is the longest chain of dependent operations (include name dependencies) in
the following program fragment?

LD r7, (r8)

SUB rl0, rll, ri2
MUL rl13, r7, rll
ST (xr9), rl3

ADD rl13, r2, rl
LD r5, (ré)

SUB r3, r4, r5

Solution

The longest chain of dependencies is four instructions long.

LD r7, (r8)

MUL rl13, r7, ril
ST (r9), rl3
ADD rl13, r2, rl

Note that the dependency between the ST and the ADD instructions is a WAR dependency.

Limits of Parallelism

73

If the code fragment from Problem 7.2 was executed on a superscalar processor with
an infinite number of execution units and one-cycle latencies for all operations, how
long would it take to issue? (In other words, what limitations do the dependencies in
the program fragment place on the issue time?)

Solution

With an infinite number of execution units, the processor’s ability to issue instructions in
parallel is limited only by the depth of the chains of dependent instructions in the program.
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The longest chain of dependent instructions was identified in the last exercise, and the next-
longest chain is only two instructions.

If all of the dependencies in the longest chain were RAW dependencies, the instructions in
the chain would have to be issued in sequence, making the issue time four cycles. However,
one of the dependencies is a WAR dependency, and instructions with a WAR dependency can
be issued in the same cycle. This allows the ST (19), r13 and ADD r13, 12, r1 instructions to be
issued in the same cycle, reducing the issue time to 3 cycles.

In-Order Execution (I)

74

How long will the following code fragment take to issue on an in-order superscalar
processor with two execution units, where all instructions have latencies of 1 cycle
and any execution unit can execute any instruction?

LD rl, (xr2)

SUB r4, r5, r6
ADD r3, rl, r7
MUL r8, r3, r3

ST (rll), r4

ST (rl2), 8

ADD rl5, rl4, ri3
SUB rl0, rl5, rlo0
ST (r9%9), rlo0

Solution

This code fragment takes' 6 cycles to issue, as shown below. Note that there are several
instructions in the fragment whose data dependencies would allow them to be executed earlier,

" but that the processor cannot move up any carlier because of the in-order execution

requirement.

Cycle 1: LD r1, (r2) SUB r4, r5, r6
Cycle 2: ADD r3, rl, r7

Cycle 3: MUL r8, r3, 3 ST (rll), r4
Cycle 4: ST (r12) r8 ADD rl15, rl4, rl3
Cycle 5: SUB r10, rl5, rl0

Cycle 6: ST (r9), rl0

In-Order Execution (1)

75

How long will the following code sequence take to issue on an in-order superscalar
processor with 4 execution units, where any execution unit can execute any
operation, load operations have a 2-cycle latency, and all other operations have a
1-cycle latency?

ADD rl1l, r2, r3
SUB r5, r4, r5
1D rd4, (r7)
MUL r4, r4, r4
ST (r7), r4
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LD r9, (rl0)
LD ri1ll, (rl2)
ADD rll, rll, rl2
MUL rll, ri1l, ril
ST (rl2), rll

Solution

The code sequence will take 8 cycles to issue, as shown in the following:

Cycle 1: ADD r1, r2, 3 SUB r5, r4, r5 LD«r4, (r7)
Cycle 2: (nothing)

Cycle 3: MUL r4, r4, r4

Cycle 4: ST (x7), r4 LD r9, (rl0) LD rl1l, (rl2)
Cycle 5: (nothing)

Cycle 6: ADD r11, rll, rl2

Cycle 7: MUL rl11, rll, rll

Cycle 8: ST (r12), rll

In-Order Execution (III)

7.6

How long would the following instructions take to execute on an in-order superscalar
processor with two execution units, where each execution unit can execute any
operation, load operations have a latency of 3 cycles, and all other operations have a
latency of 2 cycles? Assume the processor has a 6-stage pipeline.

LD r4, (r5)

LD r7, (r8)

ADD r9, r4, r7
LD rl0, (rll)

MUL rl2, rl3, rl4
SUB r2, r3, rl

ST (r2), rlb

MUL r2l1, r4, x7
ST (r22), r23

ST (r24), r2l1 .

Solution

The pipeline latency is 6 cycles, and it takes 9 cycles to issue all of the instructions, as
shown in the following:

Cycle 1: LD r4, (r5) LD r7, (r8)
Cycle 2: (nothing)

Cycle 3: (nothing)

Cycle 4. ADD r9, r4, 7 LD ri0, (rll)
Cycle 5: MUL rl12, rl13, rl4 SUB r2, r3, ril
Cycle 6: (nothing)

Cycle 7: ST (r2), rl5 MUL r2l, r4, r7
Cycle 8: ST (r22), r23

Cycle 9: ST (r24), r21

Therefore, the total execution time is 6 + 9 — 1 = 14 cycles
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Restricted Execution Units

7.7 How long would the program from Problem 7.6 take to issue if the processor was
limited so that at most one of the instructions issued in a cycle could be a memory
(load or store) operation, and at most one of the instructions could be a non-memory
operation (i.e., if one of the execution units executed only memory instructions and
one of the execution units executed only non-memory instructions?) All other
parameters of the processor are the same as in Problem 7.6.

Solution:
The program would take 11 cycles to issue:

Cycle 1: LD r4, (x5)
Cycle 2: LD r7, (r8)
Cycle 3: (nothing)
Cycle 4: (nothing)

Cycle 5: ADD r9, r4, r7 LD rl10, (rll)
Cycle 6: MUL rl12, rl13, rl4

Cycle 7: SUB r2, r3, rl

Cycle 8: (nothing)

Cycle 9: ST (r2), rlS MUL r21, r4, r7

Cycle 10: ST (r22), r23
Cycle 11: ST (r24), r21

Out-of-Order Execution (I)

7.8  How long would the code fragment from Problem 7.4 take to issue on an out-of-order
superscalar processor with all other parameters the same as the original exercise?
Assume that the instruction window of the processor is large enough to cover the
entire code fragment and that the processor takes the greedy approach to issuing
instructions discussed in the chapter.

Solution

It would take 5 cycles, as shown in the following:

Cycle 1: LD rl, (r2)
Cycle 2: ADD r3, rl, r7
Cycle 3: MUL r8, r3, r3
Cycle 4: ST (rl2), 8

SUB r4, r5, r6
ST (rll), r4

ADD rl15, rl4, rl3
SUB rl10, rl15, rio0

Cycle 5: ST (r9), rl0

Out-of-Order Execution (II)

7.9 How long will the code fragment from Problem 7.5 take to issue on an out-of-order
processor whose other parameters are the same as the one in the original exercise?
Use the greedy scheduling assumption, and assume that the instruction window of
the processor is large enough to cover the entire program fragment.
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Solution

It would take 6 cycles to issue. Note that the time to issue these instructions could have
been reduced by placing the LD rl1, (r12) in cycle 1 instead of the LD 19, (r10), but this would
have violated our greedy scheduling assumption.

Cycle 1: ADD rl1, r2, r3 SUB r5, r4, r5 LD r4, (r7) LD r9, (rl0)
Cycle 2: LD rll, (rl2)

Cycle 3: MUL r4, r4, r4

Cycle 4: ST (x7), r4d ADD rll, rll, rl2

Cycle 5: MUL rl11, rll1, ril

Cycle 6: ST (rl2), rll

Out-of-Order Execution (III)

7.10 How long would the instructions from Problem 7.6 take to issue on an out-of-order
superscalar processor with 2 execution units, where all operation latencies are the
same as in Problem 7.6? Use the greedy scheduling assumption, and assume that the
processor’s instruction window is large enough to cover the entire program fragment.

Solution
They would take 6 cycles to issue:

Cycle 1: LD r4, (r5) LD r7, (r8)
Cycle 2: LD r10, (rll) MUL rl2, ri13, rl4
Cycle 3: SUB r2, r3, rl ST (r22), r23
Cycle 4: ADD r9, r4, r7 MUL r21, r4, r7
Cycle 5: ST (r2), rl5

Cycle 6: ST (r24), r21

Out-of-Order Execution with Restricted Execution Units

7.11 Suppose the processor. from Problem 7.10 had 1 execution unit that executed
memory instructions and 1 execution unit that executed non-memory instructions.
If all other parameters of the processor remain the same, how long would the code
fragment take to issue?

Solution

It would take 8 cycles to issue:

Cycle 1: LD r4, (r5) MUL, "rl2, rl3, ril4
Cycle 2: LD r7, (r8) SUB r2, r3, rl
Cycle 3: LD r10, (rll)

Cycle 4: ST (r2), rl5S

Cycle 5: ADD r9, r4, r7 ST (r22), r23

Cycle 6: MUL r21, r4, r7

Cycle 7: (nothing)

Cycle 8: ST (r24), r21
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Register Renaming (I)

7.12 How many hardware registers are required to allow register renaming to break all of
the WAR and WAW dependencies in the following set of instructions?

LD rl, (r2)

ADD r3, r4, rl
SUB r4, r5, r6
MUL r7, r4, r8
ASH r8, r9, rlo
SUB rl1l, r8, rl2
DIV rl12, rl1l3, rl4
ST (rlS5), rl2

.Soldtion

The code fragment uses 15 architectural registers. In addition, there are three WAR
dependencies: ADD 13,14, 1l - SUB 4, 15, 16, MUL 17, r4, 18 — ASH 18, 19, 110, and SUB
rl1, 18, r12 — DIV r12, r13, r14. There are no WAW dependencies in the code. Therefore, a
total of 18 hardware registers are required if register renaming is to break all of the name
dependencies in the program (15 for the 15 architectural registers, plus 3 to rename each of the
registers involved in the WAR dependencies).

Register Renaming (II)

713 Show how register renaming hardware would transform the code fragment from the
previous exercise. Assume that the processor has sufficient hardware registers to
perform the required renaming.

Solution

(Hardware register numbers are the same as architectural register numbers except when
renaming is required to break dependencies.)

LD hwl, (hw2)

ADD hw3, hw4, hwl
SUB hwl6, hw5, hwé
MUL hw7, hwl6, hw8
ASH hwl7, hw9, hwl0
SUB hwll, hwl7, hwl2
DIV hwl8, hwl3, hwld
ST (hwl5), hwl8

Register Renaming (I1I)

7.14 How long would the original code sequence from Problem 7.12 and the renamed
code sequence from the previous exercise take to issue on an out-of-order superscalar
processor with 4 execution units, each of which can execute any operation? Assume
all instructions have latencies of 1 cycle, use the greedy scheduling assumption, and
assume that the processor’s instruction window is large enough to cover the entire
code sequence.
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Solution

Without register renaming the sequence takes 5 cycles to issue, because instructions with a
WAR dependency can issue in the same cycle, but not out of order:

Cycle 1: LD rl, (r2)

Cycle 2: ADD r3, r4, rl SUB r4, r5, ré
Cycle 3: MUL r7, r4, r8 ASH r8, r9, rl0
Cycle 4: SUB rl11, r8, r12 DIV rl2, rl3, rl4
Cycle 5: ST (rl5), rl2 :

With register renaming, the sequence can be issued in 2 cycles, because we can issue
instructions that originally had WAR dependencies out of order:

Cycle 1: LD hwl, (hw2) SUB hwl6é, hw5, hwé ASH hwl7, hw9, hwlQ DIV hwl8, hwl3, hwl4
Cycle 2: ADD hw3, hwd4, hwl MUL hw7, hwl6, hw8 SUB hwll, hwl7, hwl2 ST (hwl5), hwl8

VLIW Scheduling (I)

7.15 Show how a compiler would schedule the code from Problem 7.5 for execution on a
VLIW processor with the same number of execution units and instruction latencies as
specified in the original exercise. Unlike the out-of-order execution problems, you
should assume that the compiler examines all possible instruction orderings to find
the best schedule. (This reflects the fact that the compiler can devote greater effort to
finding the best schedule than is usually possible in hardware.) Be sure to include the
NOPs (no operation instruction) for unused operations.

Solution

The code can be scheduled in 5 instructions. One example of a correct schedule is shown
in the following, although other schedules that use the same number of instructions exist:

Instruction 1: SUB r4, r5, r5 LD r4, (r7) LD r9, (rl0) LDrll, (rl2)
Instruction 2: ADD rl, r2, r3 NOP NOP NOP
Instruction 3: MUL r4, r4, r4 ADD rll, rll, rl2 NOP NOP
Instruction 4: ST (r7), r4 MUL rll, rl1l, rll NOP NOP
Instruction S: ST (r12), rll NOP NOP NOP
VLIW Scheduling (II)

7.16 Show how a compiler would schedule the following program for execution on a
VLIW with 4 execution units, each of which can execute any instruction type. Load
instructions have a latency of 3 cycles, and all other instructions have a latency of 1
cycle. Keep in mind that, in a VLIW, the old value of an operation’s destination
register remains available to be read until the operation completes.

SUB r4, r7, 8
MUL rl10, rll, rl2
DIV rl4, rl3, rl5
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ADD r9, r3, r2
LD r7, (r20)
LD r8, (r2l)
LD rll, (r22)
LD rl2, (r23)
LD rl3, (r24)
LD rl5, (r25)
LD r3, (r30)
LD r2, (r3l)
ST (r26), r4
ST (r27), rl0
ST (x28), rl4
ST (r29), r9

Solution

Taking advantage of the fact that old register contents are not overwritten in a VLIW
processor until the writing instruction completes, this sequence can be scheduled into 4
instructions. Here, we are deliberately scheduling the SUB r4, 17, 18 after instructions that load
r7 and 18, but before those instructions complete. The subtract will see the old value of r7 and
18, which is what we want, since the subtract appears before the loads in the original program.
The MUL, DIV and ADD instructions are similarly scheduled during the latencies of
instructions that overwrite their input operands so that they see the old values of those

registers.

Instruction 1: LD r7, (r20) LD r8, (r2l) LD rll, (r22) LD rl2, (r23)
Instruction 2: LD r13, (r24) LD rl5, (r25) LD r3, (r30) LD r2, (r3l)
Instruction 3: SUB r4, r7, r8 MUL rl10, rll, rl2 DIV rl4, rl3, rl5 ADDr9, r3, r2
Instruction 4: ST (r26), r4 ST (xr27), rl0 .ST (r28), rl4 ST (r29), r9

(Note that the load instructions can be placed in the first two instructions in any order
without changing the number of instructions that are required.)

Loop Unrolling (I)
7.17 Why does unrolling a loop often improve performance?

Solution

Loop unrolling improves performance because iterations of loops are often independent, or
at least contain some operations that do not depend on the previous iteration of the loop.
However, the control hazard created by the branch back to the start of the loop makes it hard
for processors to issue instructions from multiple loop iterations simultaneously. Unrolling a
loop merges several iterations into one straight-line section of code that the processor or
compiler can examine to locate independent instructions. This generally increases the amount
of instruction-level parallelism in the program (number of instructions that can be executed
per cycle), improving performance. Loop unrolling also reduces the number of conditional
branch instructions executed during the execution of the loop, further improving performance.
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Loop Unrolling (II)

7.18 Show how a compiler would unroll the following infinite loop 4 times. Be sure to
include the preamble code (the code that computes all of the pointers required for the
operations within each iteration of the unrolled loop). Assume that the processor has
as many architectural registers as required.

loop:

LD rl, (r2)

LD r3, (r4)

LD r5, (x6)
ADD rl1l, rl, x3
ADD ri, rl, x5
DIV rl, rl1, r7
ST (r0), rl
ADD r2, #4, r2
ADD r4, #4, r4
ADD r6, #4, r6
ADD r0, #4, r0
BR loop

Solution

Here is an example of how the compiler might unroll the loop. The key elements in the
loop unrolling are the preamble, to generate the pointers required by the unrolled loop,
incrementing all of the pointers by 16 instead of 4 in each unrolled iteration because the
unrolled iteration contains 4 of the original iterations, and realizing that r7 does not change
from iteration to iteration of the original loop, so we do not need multiple registers to hold the
value in 17 during different iterations of the original loop. There are many different ways in
which this loop could be unrolled. Any solution that incorporates the key elements described
above and performs the work of 4 iterations of the old loop in each iteration of the unrolled
one is correct.

In addition to the basic unrolling, this example moves all of the loads in the unrolled loop
to the beginning of the loop, and it schedules as many operations as possible between the
divides and the stores that write the results of the divides to memory. These reorderings will
improve the performance of the loop by giving the loads and divides, which are often long-
latency operations, more time to complete before their results are needed.

preamble:
ADD r8, #4, r0
ADD rl0, #4, r2
ADD rl2, #4, r4
ADD rl4, #4, ré6
ADD rl6, #8, r0
ADD rl8, #8, r2
ADD r20, #8, r4
ADD r22, #8, r6
ADD r24, #12, r0
ADD r26, #12, r2
ADD r28, #12, r4
ADD r30, #12, r6
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loop:
LD rl, (r2)
LD r3, (r4)
LD r5, (re6)
LD r9, (rl0)
LD rll, (rl2)
LD rl3, (rl4)
LD rl7, (rl8)
LD rl9, (r20)
LD r21, (r22)
LD r25, (r2e6)
LD r27, (r28)
LD r29, (r30)
ADD rl, rl, 3
ADD rl, rl, r5
DIV rl1l, ri1, x7
ADD r9, r9, rll
ADD r9, r9, rl3
DIV r9, r9, r7
ADD rl7, rl7, rl9
ADD rl17, ri7, r21
pIiv rl17, rl7, 7
ADD r25, r25, r27
ADD r25, r25, r29
DIV x25, r25, r7
ADD r2, #16, r2
ADD r4, #16, r4
ADD r6, #16, ré
ADD rl0, #16, rl0
ADD rl2, #16, rl2
ADD rl4, #16, rl4
ADD rl18, #16, rils8
ADD r20, #16, r20
ADD r22, #16, r22
ADD r26, #16, r26
ADD r28, #16, r28
ADD r30, #l6, r30
ST (r0), rl
ADD r0O, #16, r0
ST (r8), r9
ADD r8, #16, r8
ST (rle), rl7
ADD rl6, #16, rlé
ST (r24), r25
ADD r24, #16, r24
BR loop

Impact of Loop Unrolling on Execution Time

7.19 Show how a compiler would schedule the original and unrolled versions of the loop
from the previous exercise for execution on a 4-wide VLIW processor that can
execute an instruction on any execution unit. Assume latencies of 3 cycles for LD
operations, and 2 cycles for DIVs and ADDs. Assume that the branch delay of the
processor is long enough that all operations in one iteration complete before the next
iteration starts. As in the other VLIW problems, assume that the compiler examines
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all possible operation orderings to find one that fits into the fewest number of
instructions. For the unrolled loop, schedule only the loop body, not the preamble.

Solution

In both parts of this problem, there are many ways to convert the loop for execution on the
VLIW in the minimum number of instructions. Here, we present examples of how the loop
could be placed in the minimum number of instructions, but any solution that achieves this
number of instructions without violating the loop’s data dependencies is correct.

Original loop: 10 instructions. '

Instruction opl op2 op3 op4
1 LD 11, (r2) LD 13, (r4) LD 15, (16) ADD 12, #4, 12
2 ADD r4, #4,14 | ADD 16, #4, 16 NOP NopP
3 NoP NOP NoP NOP
4 ADDrl, 11, 13 NOP NoOP NOP
5 NOP NOP NOP NOP
6 ADDrl, rl, 15 NOP NOP NoOP
7 NOP NOP NopP NOP
8 DIV rl, rl, 7 NOP NOP NOP
9 NOP NOP NOP NOP

10 ST (10), rl BR loop ADD 10, #4, 10 NOP

Unrolled loop: 12 instructions. By unrolling the loop, we have managed to do 4 times as
much work in each iteration, with only a 20 percent decrease in the execution time of an
iteration.

Instruction opl op2 op3 op4
1 LD, (12) LD 13, (r4) LD 19, (r10) LD rll, (r12)
2 LD r17, (r18) LD rl19, (r20) LD 125, (126) LD 127, (128)
3 LD 15, (r6) LD r13, (r14) LD 21, (r22) LD 129, (r30)
4 ADDrl, 11, 13 ADD 19, 19, r11 ADD 12, #16, 12 ADD r4, #16, r4
5 ADD rl17, r17, r19 ADD 125, 125, 127 ADD rl10, #16, r10 ADD rl2, #16, r12
6 ADDrl, 11, 15 ADD 19, 19, r13 ADD rl18, #16, r18 ADD 120, #16, 120
7 ADD r17, r17, 121 ADD 125, 125, 129 ADD 126, #16, 126 ADD 128, #16, 128
8 DIV rl, rl, r7 DIV 19, 19, 17 ADD 16, #16, 16 ADD rl4, #16, r14
9 DIV r17, 117, 17 DIV 125, 125, 17 ADD 122, #16, 122 ADD 130, #16, r30
10 ST (10), rl ST (18), 19 ADD 10, #16, 10 ADD 18, #16, r8
11 ST (¢16), r17 ST (124), 125 ADD rl16, #16, r16 ADD r24, #16, 124
12 BR loop NOP NOP NOP




