8.6 SUPERSCALAR OPERATION

a address in DMAR can be obtained directly from the register file or
o support t_hc register indirect and indexed addressing mocfiges
MDR registers are provided for read and write operations. D:.ata can be
' e between these registers and the register file during load and store
transf‘?ons without the need to pass through the ALU.

have been introduced at the inputs and output of the ALU. These

Oper;‘ Buffer registers ucec
" gers GRC1, SRC2, and RSLT in Figure 8.7. Forwarding connections are not
8.18. They may be added if desired.

re o™, .
g cluded in Figure 2 - . .
mn pstruction register has been replaced with an instruction queue, which is

6. The st .
ded from the instruction cache.
t of the instruction decoder is connected to the control signal pipeline.

1045 The outpy : .
ring control signals and passing them from one stage to the next along

he peed for buffering ¢ ;) o
ith the instruction 18 discussed in Section 8.1. This pipeline holds the control signals
W

B2 and B3 in Figure 8.2a.

in puffers b- _ .
The follow1ng operations can be pet

Figure 8.18:
, Reading an instruction from the instruction cache Q‘,J
, [ncrementing the PC

Decoding an instruction
g into the data cache

ters from the register file

3 he dat

Lo ALUT

from th g eparate
'~ .d directly

formed independently in the processor of

Reading from O writin
Reading the contents of up to two regis
o one register in the register file

. Writing int
performing an ALU operation

urces, they can be performed
des the flexibility required to
e, let Iy, I, Is, and I, be a
lowing actions all happen

Because these operations do not use any shared reso

simultaneously 1n any combination. The structure provi
implement the four-stage pipeline in Figure 8.2. For exampl
sequence of four instructions. AS shown in Figure 8.2a, the fol
during clock cycle 4:

* Write the result of instruction I; into the register file

* Read the operands of instruction I, from the register file

* Decode instruction I3
Fetch instruction I, and increment the PC. /

8]
6 SUPERSCALAR OPERATION

Piner:.
pelining makes it possible to execute instructions concurrently. Several instructions
o - ime, but they are in Qifferent stages of th.dr
g deCodl de one instruction is performing an ALU operation, another ll_lstrucuon
ipelin 1 ¢d and yet another is being fetched from the memory. InStr_uctlons enter
ﬁ:peline and Strl.Ct program order. In the absence of hazards, one Instruction enters the

¢ aximun? ne instruction completes execution in each clock cycle. This means that

throughput of a pipelined processor is one instruction per clock cycle.

.

Ein

‘

CHAPTER 8 °* PIPELINING

A more aggressive approach is to equip the proceS:fl); Wslt?o?l{};;fﬁﬁ?cessmg Unigg
to handle several instructions in parallel in each prOCiS gle a;d the bro ’drrar}gen]eﬂ,
several instructions start execution in the same clo; C}};C vi,n " insl?truCt:_SSm 1$ saiq
use multiple-issue. Such processors are capable 01 aCTI}fe fre 1(nownc 10N executig,
throughput of more than one instruction per cycle. }’e this amorn aSh Superscajq,
processors. Many modern high-performanc.e processors use this approach. .

We introduced the idea of an instruction queue in Section 8.3. We poingeq ou
that to keep the instruction queue filled, a processor should be ab}e to f;tch MOre thyy
one instruction at a time from the cache. For supe.rscalar operation, this arrangemey,
is essential. Multiple-issue operation requires a W1_der path to the cache and.multiple
execution units. Separate execution units are provided for integer and floating-pojy
Instructions. ‘ . .

Figure 8.19 shows an example of a processor with tvyo executlon_ units, one for
integer and one for floating-point operations. The Instructlgn fetch‘ unit 1s capable of
reading two instructions at a time and storing them in the instryiction queue. In each
clock cycle, the Dispatch unit retrieves and decodes up to two 1nstructions from the
front of the queue. If there is one integer, one floating-point instruction, and no hazards,
both instructions are dispatched in the same clock cycle.

In a superscalar processor, the detrimental effect on performance of various haz-
ards becomes even more pronounced. The compiler can avoid many hazards

through
judicious selection and ordering of instructions. For example, for the processor in
Figure 8.19, the com

piler should strive to interleave floating-point and integer instruc-
tions. This would enable the dispatch unit to keep both the integer and floating-point

F : Instruction
fetch unit

Instruction queue

1 ‘_"\ Floating-

point —
unit
Dispatch |-
unit
L. Integer
unit =l I

Figure 8.19
A Processor with two execution ynits

8.6 SUPERSCALAR OPERATION

— Time

Clock cycle ! 2 3 4 5 6 7
], (Fadd) Fi D, Eia Eip Eic | 'W,
I, (Add) F; D, E, W /

)
I, (Fsub) Fs D, | Bs | B | By | W,
I, (Sub) F, D, E, | Wy

Figure 8.20 An example of instruction execution flow in the processor of
Figure 8.19, assuming no hazards are encountered.

gh performance is achieved if the compiler

units busy most of the time. In general, hi
take maximum advantage of the available

is able to arrange program instructions to

hardware units.
Pipeline timing is shown in Figure 8.20. The blue shading indicates operations in

the floating-point unit. The floating-point unit takes three clock cycles to complete the
floating-point operation specified inIj. The integer unit completes execution of I; inone
clock cycle. We have also assumed that the floating-point unit is organized internally
asa three-stage pipeline. Thus, it can still accept a new instruction in each clock cycle.
Hence, instructions I3 and 14 enter the dispatch unit-in cycle 3, and both are dispatched
Incycle 4. The integer unit can receive a new instruction because instruction I has
Proceeded to the Write stage. Instruction Iy is still in the execution phase, but it has
Moved to the second stage of the internal pipeline in the floating-point unit. Therefore,
InStruction 15 can enter the first stage. Assuming that no hazards are encountered, the

nStryct; -
ructions complete execution as shown.

8,
6.1 OUT-OF-ORDER EXECUTION

me order as they appear in the
f order. Does this lead to any
dependencies among

hE; ‘

l 1 . .

rogriure 8.20, instructions are dlspatched in the sa
M. However, their execution is completed out O

Prob) -
. “EMS? We have already discussed the issues arising from

Sty .
i if i i the execution
', ons, For example, if instruction I, depends on the result of Iis e

cies are handled correctly, there 18 no

feag elayed. As long as such dependen y, there
Whe(r)ln\;e delay the Cxecutior% of an instruction. However, 4 new corrl.P]rllca};ﬁ:‘:3 ;tril;f:
4y be © consider the possibility of an instruction causing an ?xcepltlo B e
S tcaused by a bus error during an operand fetch or by an 1.llega op ister}i e
PP divide by zero. The results of I aré written back 1nt0 the reg

N

CHAPTER 8 - PIPELINING

cycle 4. If instruction I; causes an exception, program exe_cution 1S in an ine
state. The program counter points to the instruction in which the exception oce
However, one or more of the succeeding instructions have been executed to Compll;r?ed-
If such a situation is permitted, the processor is said to have imprecise exc epn,onsnon.
To guarantee a consistent state when exceptions occur, the results of the execmi(')
instructions must be written into the destination locations strictly in program orde; "Fh(')
means we must delay step W» in Figure 8.20 until cycle 6. In turn, the integer exec-utioIS
unit must retain the result of instruction I», and hence it cannot accept Instructiop I:l

until cycle 6, as shown in Figure 8.21qa. If an exception occurs during an Instructioy

ONSisten

—= Time

Clock cycle 1 2 3 4 5 6 7
I, (Fadd) F, D, | BEia| Bz | Bic | Wi
I, (Add) /| D | E Tttt W,
I3 (Fsub) Fy D5 Esa | Ess E3p W3
1, (Sub) F, D, T E4 Wy

(a) Delayed write

Clock cycle -1 2 3 4 5 6 7
I, (Fadd) Fy D, Eia | Es Eic Wy
12 (Add) F2 [)2 EZ TW2 W2
13 (FSUb) F3 D'; E3A E3B E3C w’l
] T-—-——-
I (Sub) F, D, E, | TW, Wi
- wa == l——_’

(b) Using temporary registers

Figure 8.21 Instruction completion in program order.

8.6 SUPERSCALAR OPERATION

p Subsequent instructions that may haye been
iS calle

d a precise exception. partially executed are discarded. Thig
[t is easier (O pl‘(?Vlde Precise exceptions in the

| interrupt 1s receive i L
nex temation chfue and thed-’ tae Dispatch unit stops reading new instructi
" mst.ruc , | 'lnStI'UCUOnS remaining in he S r}lctlons from
mstrucnons whose execution is pending contiue queue are discarded. All

s G115 registers st 1 to completion. At this point, the
" stent state, and interrupt processing can

ase of external interrupts. When

begin-

362 EXECUTION COMPLETION

Itis d?suable.to 1?53 out-of-order execution, so that an execution unit is freed to execute
other mstructllons as soon as pqsmble. AF the same time, instructions must be completed
in program order to allow precise exceptions. These seemingly conflicting requirements
are readily resolved if execution is allowed to proceed as shown in Figure 8.20, but
the results are written into temporary registers. The contents of these registers are
later transferred to the permanent registers in correct program order. This approach is
illustrated in Figure 8.21b. Step TW is a write into a temporary register. Step W is
the final step in which the contents of the temporary register are transferred into the
appropriate permanent register. This step is often called the commitment step because
the effect of the instruction cannot be reversed after that point. If an instruction causes
an exception, the results of any subsequent instruction that has been executed would
still be in temporary registers and can be safely discarded.

A temporary register assumes the role of the permanent register whose data it is
holding and is given the same name. For example, if the destination register of I» is RS,
the temporary register used in step TW» 1s treated as R5 during clock cycles 6 and 7.
Its contents would be forwarded to any subsequent instruction that refers to RS during
that period. Because of this feature, this technique is called register renaming. Note
that the temporary register is used only for instructions that follow I in program order.
If an instruction that precedes I needs to read R5 in cycle 6 or 7, 1t \yould access the
dctual register RS, which still contains data that have not been modified by instruc-
tionI,,

_When out-of-order execution is allowed, a special contr_ol unit is needed to guaran-
te¢ in-order commitment. This is called the commitment unit. It uses a queue calleq the
"eorder buffer to determine which instruction(s) should be comrpﬂted next. Instructions
o€ entered in the queue strictly in program order as they are dlSPat‘fhed ﬁcotrheﬁg:‘ttiﬁg_'
liolrllequ1 o instruction reaches the head Of- e s arl(ti ;lrllzf?:;c;l tflrc())[:rlothe ?emp‘orary
regi 4 been completed, the corresponding 1'§sults i d from the queue.

BISters to the permanent registers and the instruction 18 removed from the
: : Con. | ‘o the temporary registers,
ar eSources that were assigned to the instruction, including the t€ PB e i
* feleased. The instruction is said to have been retired at this point. becaus

Muctio, ; : i were
tirucnon I8 retired only when it 1s at the head of the queue, all ms}ructnons thoalfn o
*Patched before ; peen retired. Hence instructions may comp

& ore it must also have been

Xecyt: i)
tion oy of order, but they are retired in program order.

|

CHAPTER 8 -« PIPELINING

8.6.3 DISPATCH OPERATION

We now return to the dispatch operation. When dispatching deClS_lons are Made, the
dispatch unit must ensure that all the resources neede_d for thf; execution of ap i“StTUction
are available. For example, since the results of an instruction may 'have to be Writte,
in a temporary register, the required register must be free, apd IL1S reserved fo, use
by that instruction as a part of the dispatch operation. A location in the reorder buffe
must also be available for the instruction. When all the resources needed are assigneq
including an appropriate execution unit, the instruction is dlspatcheq. | ‘
Should instructions be dispatched out of order? For example, if instry
Figure 8.20b is delayed because of a cache miss for a source operand, the.integ
be busy in cycle 4, and 14 cannot be dispatched. Should Is be dispatched inste
ciple this is possible, provided that a place is reserved in the reorder buffer fo
14 to ensure that all instructions are retired in the correct order, Dispatching
out of order requires considerable care. If L5 is dispatched while 1, is still Waiting for
Some resource, we must ensure that there is no possibility of a deadlock occurring,
A deadlock is a situation that can arise when two units, A and B, use a shared
resource. Suppose that unit B cannot complete its task until unit A completes its tagk,
At the same time, unit B has been assigned a resource that unit A needs. If this happens,
neither unit can complete its task. Unit A is waiting for the resource it needs, which s

being held by unit B. At the same time, unit B is waiting for unit A to finish before i
can release that resource.

ction [, iy
€runit wjj|
ad?1In prin-
T Instructjoy
Instructiong

If instructions are dispatched out of order, a deadlock can arise as follows. Suppose
that the processor has only one temporary register, and that when Is is dispatched, that
register is reserved for it. Instruction I, cannot be dispatched because it is waiting for
the temporary register, which, in turn, will not become free until instruction Is is retired.
Since instruction I5s cannot be retired before 1, we have a deadlock.

To prevent deadlocks, the dispatcher must take many factors into account. Hence,

issuing instructions out of order is likely to increase the complexity of the Dispatch uni

significantly. It may also mean that more time is required to make dispatching decisions.
For these reasons, most processors use only in-order dispatching. Thus, the program
order of instructions is enforced at the time |

i) , t
rof i : Instructions are dispatched and again @
the time instructions are retired. Between th

In the next section, we present the UltraSPARC 1] as a case study of a commercially
successful, superscalar, highly pipelined pr

. . : o 185UeS
aised in th: ocessor. The way in which the various 1_0 ;
'rdlste 1:} this chapter have beep handled in this processor and the choices made arhié
Instructive.

8.7 UltraSPARC I Exampr g

8.
| 8 PERFORMANCE CONSIDERATIONS
orouping logic continues to dispatch instructiong fee
g ty. It tak i
puffer PO sery extggkels three or four clock cycles to load a cache block (eieh
insmlcuons) rom the externa cache, depending on the processor model. This is out
e length of time 1t takes the grouping | odel. This s about

(he sam - e ogic to dispatch the instructions in a full
instructlonrbuﬂleei.)(}l?:;:él{l}l :??}t 1t' 1S not qlways possible to dispatch four instructions in
very clock cycle. - 1T Hhe mstruction buffer is full at the time a cache miss occurs

operation of the BXGCUIIOH'plpeline may not be interrupted at all. If a miss also occurs
inthe exterﬂﬂl_caC1_1e» considerably more time will be needed to access thc;, memory. In
(his cases it i me\fltable that the pipeline will be stalled. g

A load operation that causes a cache miss enters the Load/store queue and waits for
o transfer from the external cache or the memory. However, as long as the destinz;tion
register Of the load operation is not referenced by later instructionsjnternal instruction
exccution continues. Thus, the instruction buffer and the Load/store queue isolate the
internal processor pipeline from external data transfers. They act as elastic interfaces

that allow the internal high-speed pipeline to continue to run while slow external data
ransfers are taking place.

m the instruction buffer until the

8.8 PERFORMANCE CONSIDERATIONS

We pointed out in Section 1.6 that the execution time, 7', of a program that has a
dynamic instruction count N is given by
N xS
T —_
R

where § is the average number of clock cycles it takes to fetch and execute one instruc-
tion, and R is the clock rate. This simple model assumes that instructions are executed
one after the other, with no overlap. A useful performance indicator is the instruction
throughput, which is the number of instructions executed per second. For sequential
tecution, the throughput, P is given by

In this section, we examine the extent to which pipelining increases instruction
throughput. However, we should reemphasize the point made in Chapter 1 regard%ng
Performance measures. The only real measure of performance 18 the total execptlon
lime of 5 program. Higher instruction throughput will not necessarily lead to higher
Performance if a larger number of instructions is needed to implement the des1.red. task.

Orthig feason, the SPEC ratings described in Chapter | provide a much better indicator
tn :
icompaung two processors. . ruction throughput by
u sl increase instructi
sure 8.2 shows that a four-stage pipeline may increase 1 g

a : Cd e s oo the i
" r of four, In general, an n-stage pipeline has the potential to Increase Ithllghpl‘t
s, T T Jue of n, the larger the performance

&ain, Ty hus, it would appear that the higher the va
18 leads 1o two questions:

0 . : . . 3 (o lized in
¥ Much of thjg potential increase in instruction throughput can be rea

Practjce

Wh 1

CHAPTER 8 -« PIPELINING

Alled. the instruction throughput 1s reduced. Hence, the -
hE mj

influenced by factors such as branch and ¢ X
ffect of these factors on performance, and they ws
pipeline stages should be used. &

Any time a pipeline is stall
formance of a pipeline is highly
penalties. First, we discuss the e
return to the question of how many

8.8.1 EFFECT OF INSTRUCTION HAZARDS

The effects of various hazards have been examined qualitativel y 1‘n.the prev.lou-g sectiong,
We now assess the impact of cache misses and bra-nch. penaltlgs 1f1 quantitative ey,

Consider a processor that uses the four—st.age'plpf?lme Of‘Fligme 8.2. The clock rate,
hence the time allocated to each step in the pipeline, 1s detel.m.med b_y the longest Step,
Let the delay through the ALU be the critical parameter. This is the time needed 1o add
two integers. Thus, if the ALU delay is 2 ns, a clock of 500 MHz can be used. Tpe
on-chip instruction and data caches for this processor ghogld also be demgn_ed to have
an access time of 2 ns. Under ideal conditions, this pipelined processor will haye an
instruction throughput, P,, given by

P, = R = 500 MIPS (million instructions per second)

To evaluate the effect of cache misses, we use the same parameters as in Sec-
tion 5.6.2. The cache miss penalty, M, in that system is computed to be 17 clock
cycles. Let 7; be the time between two successive instruction completions. For se-
quential execution, 7; = S. However, in the absence of hazards, a pipelined processor
completes the execution of one instruction each clock cycle, thus, 7; = 1 cycle. A
cache miss stalls the pipeline by an amount equal to the cache miss penalty. This means
that the value of 7 increases by an amount equal to the cache miss penalty for the
instruction in which the miss occurs, A cache miss can occur for either instructions or
data. Consider a computer that has a shared cache for both instructions and data, and
let d be the percentage of instructions that refer to data operands in the memory. The
average increase in the value of Ty as a result of cache misses js given by

Omiss = ((1 — hi) +d(l = hd)) X Mp

where h; and h, are the hit ratios for instructions and d
30 percent of the instructions access data in memor
rate and a 90-percent data hit rate, &,y is given by

ata, respectively. Assume th!
y. With a 95-percent instruction hit

Omisy = (0.05 4+ 0.3 x 0.1) x 17 = 1.36 cycles

Taking thig delay into account, the processor’s throughput would be
p,= X R
)= = — 0]
, T’ l it ami.s:\' 04~R

Note that wi},

R expres i : : : . . ions Of
Instructions pe beied in Mz, the throughput is obtained directly in millio

I'second. For R = 500 MHz, P, =210
et us COmpare this valye (g the thr I ai MIPS" ipelining. A
throughput obtainabje without pipelining

prr
I that ygeg - :
Sequential execution requires four cycles per instructjon. Its throug

hput

8.8 PERF :
RFORMANCE CONS!DERATIONS

would b° 505
Pp=— =
' 4+ (Smr'x.\ 0-19R
for K = 500 MHz, Ps = 93 MIPS_- Clearly, pipelining leads to significantly higher
But the performance gain of 0.42/0.19 = 2.2 is only slightly better ?h:;

i If the ideal case.

ne-ha
° ng the cache

Reduci
As Chapter 5exp
the primary, on-c
‘ll]l g-word block fror

: m.iss penalty is particularly worthwhile ina pipelined processor
lains, this can be achieved by introducing a secondary cache beth:er;
hip cache and the memory. Assume that the time needed to transfer
L 1 the secondary cache is 10 ns. Hence, a miss in the primary cache
for which the required block is found in the secondary cache introduces a penalty, M,
of 5 cycles. [n the case of a miss in the secondary cache, the full 17-cycle penalty (M)
is still incurred. Hence, assuming a hit rate /1 of 94 percent in the secondary cache, the

age increase in Ty is
= ((1 —hi) +d(1 —=hy)) x (hs x M, + (1 —hy)

or 340 MIPS. An equivalent non-
2R, or 110 MIPS. Thus, pipelining

aver
x M) = 0.46 cycle

5111!'&5
ughput in this case is 0.68R,

pipelined processor would have a throughput of 0.2

provides a performance gain of 0.68 /0.22 =3.1.
The values of 1.36 and 0.46 are, in fact, somewhat pessimistic, because we have

assumed that every time a data miss occurs, the entire miss penalty is incurred. This
is the case only if the instruction immediately following the instruction that references
memory is delayed while the processor waits for the memory access to be completed.
However, an optimizing compiler attempts to increase the distance between two instruc-
tions that create a dependency by placing other instructions between them whenever
possible. Also, in a processor that uses an instruction queue, the cache miss penalty
during instruction fetches may have a much reduced effect as the processor is able to

dispatch instructions from the queue.

The instruction thro

88.2 NUMBER OF PIPELINE STAGES

T — . : :
he fact that an n-stage pipeline may increase instruction throughput by a factor of n

zfaggizszitcl:at WC‘ should use a large nurp‘per of stages.. H(?WGVGl:, as the number of pipeline
i“S“'UCtionszS-esl; 50 does the probability of the pipeline bemg stalled, be'ca‘us.e I]'IOI‘C‘
hatae fyy 'e eing e.xecuted concprre'ntly. Thus, dependencies betws:eTl instructions
More Signiﬁgdlt n}ay S.tl” cause the pipeline to stall. Also, branch .pel}ultle.'s m'fly b.ecome
Yalue of 1 pe ant, a5 F lgure 8.9 shows. For these reasons, thej gain from increasing the
. iglins t9 d1mm1sh,'and the associated cost 13 not JUSllﬁed: N

¢ Processop _}POI tant fz.lctor is the inherent dela'y in the basic operations peltmmefl by
the ¢y i h_e most important among these 1 the ALU delay. In many proces.sons,
Omplegeq ime of the processor clock is chosen such that one ALU operation can be
me N one cycle. Other operations are divided into steps that take about the same

§a .
Ay, [n:gd operation. It is also possible to us€ a pipelined ALU. For exan.lple, 'fhe
i Stag ompaq Alpha 21064 processor consists of a two-stage pipeline, In which

€ Com .)]
Pletes its operation in 5 ns.

A

8.1

N

CHAPTER 8 -+ PIPELINING

Many pipelined processors use four to six stages. Others divide i“S“’UClion
tion into smaller steps and use more pipeline stages angl a faster clock. Foy exam Xegy,
UltraSPARC 11 uses a 9-stage pipeline and Intel’s Pengum-Pro uses a 12-sia00 Ple»_lhe
The latest Intel processor, Pentium 4, has a 20-stage pipeline and uses g Clozkzlpe]‘“‘@.

the range 1.3 to 1.5 GHz. For fast operations, there are two pipeline stages ip OHeCel In

cycle.

8.9 CONCLUDING REMARKS

Two important features have been introduced iq lh.is chapFer, pipelining ang Mulip,
issue. Pipelining enables us to build processors with instruction throughput approachip,
one instruction per clock cycle. Multiple issue makes possible superscalar OPeratione
with instruction throughput of several instructions per clock cycle. ‘

The potential gain in performance can only be realized by careful attention to three

aspects:

* The instruction set of the processor

* The design of the pipeline hardware

» The design of the associated compiler

It is important to appreciate that there are strong interactions among all three. High
performance is critically dependent on the extent to which these interactions are taken

into account in the design of a processor. Instruction sets that are particularly well-suited
for pipelined execution are key features of modern processors.

PROBLEMS

Consider the following sequence of instructions

Add #20,RO,R1
Mul #3,R2.R3
And #$3A R2,R4

Add RO,R2.R5

and R2
athas
ction

In all instructions, the destination operand is given last. Initially, registers RO

contain 2000 and 50, respectively. These instrugtions are executed ina computerth

afour-stage pipeline similar to that shown in Figure 8.2. Assume that the first instru

is fetched in clock cycle 1, and that instruction fetch requires only one clock cyel®

(a) Draw a diagram similar to Figure 8.2¢. Describe the operation being perfol'”wd "
each pipeline stage during each of clock cycles I through 4.

() Gi;e the contents of the interstage buffers, B1, B2, and B3, during cloc
Lo J.

K cycles”

A

