uldlicil 1 i
v OCIing tispredicted, by d
only introduces a smg]] delay ip o8 N0t cayge a
. . e

€Xecutiop 1 f

. nt 1

ag associated With brapc }‘ln?e. An alternatrilvexecmio“
Inst

n 8. s ¢ i
7 how thjs Informatjqy, is tions i, | “PProggy islspred.

8.4 INFLUENCE 0N INSTRUCTION SETS

We have seen that some instructiong
other.s. For.example, instruction side eli

In this section, we examine the relatj i dto Undesirghje ded
Instruction features. We discuss ¢ |
modes and condition code flags.

8.4.1 ADDRESSING MODES

Addressing modes should provide the means for accessin .
simply and efficiently. Useful addressing modes include ingea VANety of dag Strucyyp,
and autodecrement. Many processors provide various combixn’algdlrem’ Auloincreng,
increase the flexibility of their instruction sets. Complex addre::is of these modest(;
those involving double indexing, are often encountered. "8 modes, su

In chqosmg the addressing modes to be implemented in a pipelineq Processor
must consider the effect of each addressing mode on instruction flow iy the pi f-we
Two important considerations in this regard are the side effects of modespsﬁzt:n;
autoincrement and autodecrement and the extent to which complex addressing modez
cause the pipeline to stall. Another important factor is whether a given mode is likely
to be used by compilers.

To compare various approaches, we assume a simple model for accessing operands
-in the memory. The load instruction Load X(R1),R2 takes five cycles to complet
execution, as indicated in Figure 8.5. However, the instruction

Load (R1),R2

can be organized to fit a four-stage pipeline because no address computati.on is required.
Access to memory can take place in stage E. A more complex addressing mod;? H:Ez
require several accesses to the memory to reach the named operand. For exampt
Instruction

Load (X(R1)),R2

may be executed as shown in Figure 8.16a, assuming that the inde
In the instruction word, After computing the address in cycle 3, i
10 access memory twice — first to read location X-H[R1] in clock cycl { instructio”
read location [X+[R1]] in cycle 5. If R2 is a source operand in the nex

| . {0
&i;lnstructlon Wwould be stalled for three cycles, which can be et
1th operand forwarding, as shown.

 offset, X, is &
O 9y 5
he processor net

8.4 INFLUENCE ON yy

T“U(:\‘\Q
N §
clock cycle | ? 3 4
5 6 T~ T\me
F D X+
Load | R IX+RU) fxeriy | w
Forward

e instruction F p | ~~TTTTemee- \

_______ E W

(a) Complex addressing mode

Add F D X+[R1] W
Load F D [X+[R17] W
Load F D [X+[R1]]] W
Next instruction F D E W

(b) Simple addressing mode

Figure 8.16 Equivalent operations using complex and simple addressing modes.

nly simple addressing modes

To implement the same Load operation using 0
uter that allows three operand

requires several instructions. For example, on a comp
addresses, we can use

Add #XRILR2
Load (R2)R2
Load (R2).R2

R2 « X+ [R1]. The two
the memory. This sequen |
les as the original, single Load 1nst

Load instructions
ce of instructions

Th - : -
¢ Add instruction performs the operation
ruction,

f
tzlt(ceh the address and then the operand from
s exactly the same number of clock €y¢

% shown in Figure 8.16b.

CHAPTER 8 « pppLINING

This ex ample indicates that, in a pipelined processor, com 1
that involve several accesses to the memory do not necessarily 12 - addressin
The main advantage of such modes is thag they reduce the nad o faStere

needed to perform a given task and thereby reduce the progra mber of ingyp,
C

tign.
nl:eeded In (:E\
€s CQUSE thz

execution, they should be avoided. The i -
. addressing m . I Pipay:

often have the fOHOWing features: g modes used in modery, EOIC):IIDE(I
SSQI.S

* Access to an operand does not require more than ope access to th
- . e

* Only load and store Instructions access memory operands

* The addressing modes used do not have side effects.

In a register. Memory is accessed in the following cycle. None of these moq

side effects, with one possible exception. Some architectures, such as ARMeSlhElS a”
address computed in the index mode to be written back into the jndex reg,i:tlow e
is a side effect that would not be allowed under the guidelines above, Note a?;)TtL“S
relative addressing can be used: this is a special case of indexed addressing ip whicafi

the program counter is used as the index register.
The three features just listed were first emphasized as part of the concept of RI§e
processors. The SPARC processor architecture, which adheres to these guidelines g

presented in Section 8.7.

8.4.2 CONDITION CODES

In many processors, such as those described in Chapter 3, the condition code flags
are stored in the processor status register. They are either set or cleared by many
instructions, so that they can be tested by subsequent conditional branch instructionsto
change the flow of program execution. An optimizing compiler for a pipelined processor
attempts to reorder instructions to avoid stalling the pipeline when branches o data
dependencies between successive instructions occur. In doing so, the compiler must
ensure that reordering does not cause a change in the outcome of a computaﬁion. The
dependency introduced by the condition-code flags reduces the flexibility available
the compiler to reorder instructions. 5
Consider the sequence of instructions in Figure 8.17a, and assume that the ']?;1\6
ecution of the Compare and Branch=0 instructions proceeds as in Figure 8~1’4" ol
branch decision takes place in step E; rather than D, because it must await the reiilijce
the Compare instruction. The execution time of the Branch instruction can be ¢

8.5 . ON'
DATAPATH AND CONTROL CONSIDERATIONS

Add
Compare
t Branch=0

RI1,R2
R3,R4

(a) A program fragment

Compare R3.R4
Add RI,R2
Branch=0

(b) Instructions reordered

Figure 8.17 Instruction reordering.

y imerchanging the Add. anq Cc;)mpare instructioqs, as shown in Figu're 8.17{9. This
qy the branch instruction Dy One cycle relative to the Compare instruction. As

t the time the Branch instruction is being decoded the result of the Com-
. instruCtion will be available gnd. a correct branch decision will be made. There

ould be 10 need for branch predl.ctlon. However, interchanging the Add and Com-
ructions can be done only if the Add instruction does not affect the condition

codes- : : .

These observations lead to two 1mportant conclusions about the way condition
codes should be handled. First, to provide flexibility in reordering instructions, the
conditioﬂ'COde flags should be affegtegi by as fgw instructions as possible. Second,
ihe compiler should be able to specify in which ‘nstructions of a program the condi-
fion codes are affected and in which they are not. An instruction set designed with
pipelining 10 mind usually provides the desired flexibility. Figure 8.17b shows the
instructions reordered assuming that the condition code flags are affected only when

this is explicitly stated as part of the instruction OP code. The SPARC and ARM
uchitectures provide this flexibility.

'S

Bg DATAPATH AND CONTROL CONSIDERATIONS

Organization of the internal datapath of a processor was introduced in Chapter 7. Con-
sider the three-bus structure presented in Figure 7.8. To make it suitable for pipelined
execution, it can be modified as shown in Figure g 18 to support a 4-stage pipeline:
The resources involved in stages F and E are shown in blue and those used in stages D
;n W in black. Operations in the data cache may happen during stage Eorata la_ter
e, depending on the addressing mode and the implementation details. This secion

‘-"APT!R 8

* PrrELniNG
—
Register
ﬁ]e \
<
&
——..!A\
E _
U
- 0
3
T Coe T - &
, PC ~
Control signal pipeline
1} —1 Incrementer
Instruction L IMAR
decoder
f Memory address
(Instruction fetches)
Instruction .
queue J
T Y Y
MDR/Write DMAR MDR/Read
Instruction cache : J
Memory address
(Data access)

1

Data cache

Figure 8.18 Datapath modified for

pipelined execution with interstage buffers at the inpu!
and output of the ALU.

is shown in blye. Sever
1. There are separ.
connections to the pro
for accessing the insgr
2. The PC g con
transferred to IMAR

al important changes to Figure 7.8 should be noted: -
ate instruction and data caches that use separate addr.ess an?w XR
cessor. This requires two versions of the MAR register, |

uction cache and DMAR for accessing the data cache. "
nected directly to the IMAR, so that the contents of the PC can i
atthe same time that ap independent ALU operation is taking place

‘_—-—._‘m‘ :m i’ L

8.6 SUPERSCALAR OPERATION 481

pe data address in DMAR can be obta

tae LU to support the register indirect an
fo”, ; Seg ﬁﬁfclt\l/;Dblztlviilesrietrlfeasl: gfivided for read and write operations. Data can be
rans qglt:/s without the need to pass tﬁrzlirg; E:lrllg Xllfiéegister RiSAuring Jout BndlSISE
of erﬂ‘ puffer registers have been introduced at the 'mp-uts and output of the ALU. These

Jisters SRC1, SRC2, and RSLT in Figure 8.7, Forwarding connections are not

1e]
?rilud% d in Figure 8.18. They may be added if desired.
inc" " rpe instruction register has been replaced with an instruction queue, which is

de;i from the instruction cache.

a instructi :

Jo _ The out};;lt orf1 (t,h:;) ﬁltigluc.tm? decoder is connected 1o the control signal pipeline.
 peed for PUHCHITS signals and passing them from one stage to the next along

T ipstruction 1s discussed in Section 8.1. This pipeline holds the control signals

i the i s
in buffers B2 and B3 in Figure 8.2a.
The following operations can be performed independently in the processor of

pigore 515
Reading an instruction from the instruction cache R"’

rementing the PC

én'e d directly from the register file or
indexed addressing modes.

. Inc
Decoding an instruction

Reading from OF writing into the data cache

Reading the contents of up to two registers from the register file

Writing into one register in the register file
performing an ALU operation

hese operations do not use any shared resources, they can be performed

Because t
simultaneously in any combination. The structure provides the flexibility required to

implement the four-stage pipeline in Figure 8.2. For example, let 1}, I», 13, and 14 be a
sequence of four instructions. As shown in Figure 8.2, the following actions all happen

during clock cycle 4:
. Write the result of instruction I; into the register file
+ Read the operands of instruction I from the register file

» Decode instruction I3
v Fetch instruction 14 and increment the PC.)

8.6 SUPERSCALAR OPERATION

Srlsehni“g makes it pos§ible to execute ir}stl'uctions concun_‘entl.y. Several instructions
exefggiem in the pipeline at the same time, but they are in different stages of their
isbein 1(11 While one instruction is pefformmg an ALU operation, another mstruction
: epipili ;C(‘)ded 'and yet another is being fetched from the memOFy. Instr}lctlons enter
Pipeline arfdm Stf{Ct program order. In the absepce pf hazards, one instruction enters the
one instruction completes execution 1n each clock cycle. This means that

€ max; I . : :
Imum throughput of a pipelined processor 1s one instruction per clock cycle.

W

