he destinati 83 INsTRuCTION HazArDS

- stina ‘

one named as the destination, Ap truction that 11
pat 1 ent addressing mode is an ey that uses

piedes. o location. the Instruction changeg gy contents of
natt® of its operands. All the precayg Of a

-3

(U . one f et lj\.['
K the destination location myst

aet™E ent or autqdecrenlent Operat
loine o an instruction as a destinati
patne 3 side effect. For example, stg
0 h.a\e gicie effects because they imp]
_;ill\lliii‘ng modes. .

ir;otl; er possible s@e_effect Involves the
| -[fucﬁons such as condltlf)pal t?ranches and
ins 22 hol da double-pr.ecwlon Intéger num
mp(gc ision number in registers R3 and R4, T

On Operand ig affected, the 1

ck Instructions, gych as push

icitly use the autoj

condition code
add-with-
ber that w
his may b

flags, which are used by
carry. Suppose that registers R |
€ Wish to add to another double-
€ accomplished as follows:

Add R1,R3

AddWithCarry R2,R4

sn implicit dependency §xists bgtween these two instructions through the carry flag
This flag is set by the first instruction and used in the second instruction, which performs
the operation

R4 « [R2] + [R4] + carry

Instructions that have side effects give rise to multiple data dependencies, which
lead to a substantial increase in the complexity of the hardware or software needed to
resolve them. For this reason, instructions designed for execution on pipelined hardware
should have few side effects. Ideally, only the contents of the destination location, either
aregister or amemory location, should be affected by any given instruction. Side effects,
such as setting the condition code flags or updating the contents of an address pointer,
should be kept to a minimum. However. Chapter 2 showed that the autoincrement and
autodecrement addressing modes are potentially useful. Condition code flags are also
needed for recording such information as the generation of a carry or the occurrence
of overflow in an arithmetic operation. In Section 8.4 we show how such functions can
be provided by other means that are consistent with a pipelined organization and with

€ requirements of optimizing compilers.

'833 INSTRUCTION HAZARDS 7

The PUrpose of the instruction fetch unit is to supply the execution umtslmléhsitlasl;zﬁ(;);
Weam of instructions. Whenever this stream is interrupted. t}-le frf:tizn may 21150

'gure § 4 illustrates for the case of a cache miss. A branch msh instructions and
Cause the Pipeline to stall. We will now examine the effect of branc

ir i W with unconditional
> Miques that can be used for mitigating their impact. W¢ start
[anches‘

CH A,,?/. PIPELINING
8.3.1” UNCONDITIONAL BRANCHES
Figure 8.8 shows a sequence of instructio.nS being e?(eaclltc(lid i“1 4 tWo-s(g, .
In;tructions [, to I3 are stored at s.uccesswe mer?m)]/ ak resses, anq L i
instruction. Let the branch target be instruction Iy ﬂ'C oc C).lcle 3,. the fegep, "
for instruction Iz is in progress at the same time that the branch InStructj,
decoded and the target address computed. In clock. cycle 4 the proceggo,
I, which has been incorrectly fetched, and fetch instruction I, Ip the
hardware unit responsible for the EX?CU[B (E) step must be told to dg
that clock period. Thus, the pipeline is stz{lled for'one- clock cycle,
The time lost as a result of a branch instruction is often referred ¢, as the
penalty. In Figure 8.8, the branch penalty is one clpck cycle. For a Jop oer pip?]w
the branch penalty may be higher. For example, Figure 8.9q shows the effeey g
branch instruction on a four-stage pipeline. We have assumed thyt the bmnchOfa
dress is computed in step E. Instructions Iz and Iy must be discarded, and g .
get instruction, I, is fetched in clock cycle 5. Thus, the branch penalty is ty, dlai
cycles. "
Reducing the branch penalty requires the branch address to be com
the pipeline. Typically, the instruction fetch unit has dedicated hardware to idenify,
branch instruction and compute the branch target address as quickly as possibe i
an instruction is fetched. With this additional hardware, both of these tasks can b
performed in step D, leading to the sequence of events shown in Figure 8.95. I i
case, the branch penalty is only one clock cycle.

Meanfip,)
nothingd '

Puted earfier;

—» Time

Clock cycle 1 2 3 4 5 6

Instruction

I, (Branch) F, E, l—“ Execution unit idle
- - -y

Is F | x !
- em wm o

I, E, E,

T Feoi | Ex JLI

8.3 INSTRUCTION HAZARDS
Clock cycle I 2 3 4 —= Time
— © 1 g
I] Fl Dl E] W]
I, (Branch) F, D, E,
\ - - -
I3 Fy D; I X
- - L]
I4 F4 X
]k Fk Dk Ek Wl(
Iis Fra1 Dy Byl
(a) Branch address Computed in Execute stage
— Time
Clock cycle 1 2 3 4 5 6 7
L Fi I D | g | w,
I, (Branch) F; | Dy
I F3 X
lk Fy Dy Ey Wi
Fis1 | Disr | Ey
Iy k+1 | Prs +1

(b) Branch address computed in Decode stage

Figure 8.9 Branch fiming.

Instruction Queue and Prefetching

: : ipeline for one or more
Either 4 cache miss or a branch instruction slalls the plgﬁl gicessors ceatlon
Clock c¥cles. To reduce the effect of these inlerrupnonlsl.].en,‘lareyneeded giidiput thes
;Ophislicmt‘-d fetch units that can fetch instructlons[l()jiosr:vem)l instructions. A separate
12 quey ~ - eue can s al s
- ®. Typically, the instruction qu
Um[" Whic " J

: i e front of the queue and
‘e call the dispatch unit, takes instructions from th

A

CHAPTER 8 -+ PIPELINING

Instruction fetch unit

Instruction queue
F : Fetch
instruction T
]
D : Dispatch
Dec ([)) ;ec E : Execute
Uit instruction

Figure 8.10 Use of an instruction queve in the hardware
organization of Figure 8.25.

sends_them to the execution unit. This leads to the organization showp iy Figure g
The dispatch unit also performs the decoding function, -

_ To be effective, the fetch unit must have sufficient decoding and processing cyp,
bility to recognize and execute branch instructions. It attempts to keep the instruclio
queue filled at all times to reduce the impact of occasional delays when fetching i
structions. When the pipeline stalls because of a data hazard, for example, the dispa
unit is not able to issue instructions from the instruction queue. However, the fetchuii
continues to fetch instructions and add them to the queue. Conversely, if there is adely
in fetching instructions because of a branch or a cache miss, the dispatch unit continis
to issue instructions from the instruction queue.

Figure 8.11 illustrates how the queue length changes and how it affects the i
tionship between different pipeline stages. We have assumed that initially the que
contains one instruction. Every fetch operation adds one instruction to the queue uk
every dispatch operation reduces the queue length by one. Hence, the queue lent
remains the same for the first four clock cycles. (There is both an F and a'Dslep{ﬂ
each of these cycles.) Suppose that instruction I} introduces a 2-cycle stall. Sinct Spﬂ;:
is available in the queue, the fetch unit continues to fetch instructions and the ¢
length rises to 3 in clock cycle 6. —

Instruction Is is a branch instruction. Its target instruction, I, is fetched me,a 4
and instruction Iy is discarded. The branch instruction would normally -Ca;isspawhf
in cycle 7 as a result of discarding instruction I¢. Instead, instruction 1401[Sh irop?
from the queue to the decoding stage. After discarding I, the queue]egzountere :
in cycle 8. The queue length will be at this value until another stall ll*le nstruct®

Now observe the sequence of instruction completions in Figure 8-the'branchinsl_)
I, 13,14, and Iy complete execution in successive clock cycles. Hencef, instructio” “[;[\
tion does not increase the overall execution time. This is because (tjderess) concu“;?m;
unit has executed the branch instruction (by computing the branch ddto . -
with the execution of other instructions. This technique is referre

s bran('h

Yy

CHAPTER 8 + PIPELINING

caused by cache misses. The effectiveness of this technique is enhanceq when ¢
instruction fetch unit is able to read more than one instruction at a time from the
instruction cache. :

8.3.{ CONDITIONAL BRANCHES AND BRANCH PREDICTION

A conditional branch instruction introduces the added hazard caused by the dependeng,
of the branch condition on the result of a preceding instruction. The decisiop, to
cannot be made until the execution of that instruction has been completed.

Branch instructions occur frequently. In fact, they represent about 20 percent of
the dynamic instruction count of most programs. (The dynamic count is the Number
of instruction executions, taking into account the fact that some Program instructiop
are executed many times because of loops.) Because of the branch penalty, this large
percentage would reduce the gain in performance expected from pipelining, Fortunately,
branch instructions can be handled in several ways to reduce their negative impact o
the rate of execution of instructions.

bl‘ﬂnch

Delayed Branch

In Figure 8.8, the processor fetches instruction I3 before it determines whether the
current instruction, I, is a branch instruction. When execution of I is completed and
a branch is to be made, the processor must discard I3 and fetch the instruction at the
branch target. The location following a branch instruction is called a branch delay slot.
There may be more than one branch delay slot, depending on the time it takes to execute
a branch instruction. For example, there are two branch delay slots in Figure 8.9« and
one delay slot in Figure 8.9b. The instructions in the delay slots are always fetched
and at least partially executed before the branch decision is made and the branch target
address is computed.

A technique called delayed branching can minimize the penalty incurred as a result
of conditional branch instructions. The idea is simple. The instructions in the delay slots
are always fetched. Therefore, we would like to arrange for them to be fully executed
whether or not the branch is taken. The objective is to be able to place useful instructions
in these slots. If no useful instructions can be placed in the delay slots, these slots must
be filled with NOP instructions. This situation is exactly the same as in the case of data
dependency discussed in Section 8.2.

Consider the instruction sequence given in Figure 8.12a. Register R2 is used_ as
a counter to determine the number of times the contents of register R1 are shifted
left. For a processor with one delay slot, the instructions can be reordered as shown
in Figure 8.12b. The shift instruction is fetched while the branch instruction is being
executed. After evaluating the branch condition, the processor fetches the instrug‘tm"
at LOOP or at NEXT, depending on whether the branch condition is true of mlﬁ\i
respectively. In either case, it completes execution of the shift instruction. The s_e‘]”?“‘;
of events during the last two passes in the loop is illustrated in Figure 8.13._PIP6““;6
operation is not interrupted at any time, and there are no jdle cycles. LOE'“‘”X',‘ﬂ
program is executed as if the branch instruction were placed after the shift 1.nslruL1U_(; n‘
That is, branching takes place one instruction later than where the branch 1115tf'llﬁfl'],.
appears in the instruction sequence in the memory, hence the name “delayed branch

_

A

N,
S
8.3 INSTRUCTION HAZARDS
LOOP Shift_left RI
Decrement R2
Branch=0 LOOP
NEXT Add R1.R3
(a) Original program loop
LOOP Decrement R2
Branch=0 LOOP
Shift_left R1
NEXT Add R1,R3
(b) Reordered instructions
Figure 8.12 Reordering of instructions for
a delayed branch.
—_— Time
Clock cycle 1 2 3 4 5 6 7 g
Instruction
Decrement F E
Branch F E
Shift (delay slot) F E
Decrement (Branch taken) F E
Branch F E
Shift (delay slof) F E
F E

Add (Branch not taken)

FI
'3Ure 813 Execution fiming showing the delay slot being filled during the last two
passes through the loop in Figure 8.12b.

L

7

CHAPTER 8 * PIPELINING

The effectiveness of the delayed branch approach depends on how oftep j is
sible to reorder instructions as in Figure 8.12. Experimental data collected fromlnﬁ),osh
programs indicate that sophisticated compilation techniques can use one branch, de‘;n
slot in as many as 85 percent of the cases. For a processor with two branch delay g a‘
the compiler attempts to find two instructions preceding the branch instruction th;t%
can move into the delay slots without introducing a logical error. The chances of findj !
two such instructions are considerably less than the chances of finding one. Tthn'f
increasing the number of pipeline stages involves an increase in the number of bra‘n,c]h
delay slots, the potential gain in performance may not be fully realized.

Branch Prediction

Another technique for reducing the branch penalty associated with conditigpy
branches is to attempt to predict whether or not a particular branch will be taken, The
simplest form of branch prediction is to assume that the branch will not take place and 1,
continue to fetch instructions in sequential address order. Until the branch condition js
evaluated, instruction execution along the predicted path must be done on a speculative
basis. Speculative execution means that instructions are executed before the processor
is certain that they are in the correct execution sequence. Hence, care must be taken that
no processor registers or memory locations are updated until it is confirmed that these
instructions should indeed be executed. If the branch decision indicates otherwise, the
instructions and all their associated data in the execution units must be purged, and the
correct instructions fetched and executed.

Anincorrectly predicted branchis illustrated in Figure 8.14 fora four-stage pipeline.
The figure shows a Compare instruction followed by a Branch>0 instruction. Branch

—» Time

Clock cycle 1 2 3 4 5 6
Instruction
I, (Compare) F, D, E, W,
I, (Branch>0) F, D,/P; E,
- am om0y
I3 F3 D; X
- om w= d
- am wm
[
14 F4 X 1
- wm wm o
Ik Fk Dy

Figure 8.14 Timing when a branch decision has been incorrectly

predicted as not taken.

